
Binary Compatible Graphics Support in Android
for Running iOS Apps

Jeremy Andrus

Department of Computer Science

Columbia University

jeremya@cs.columbia.edu

Naser AlDuaij

Department of Computer Science

Columbia University

alduaij@cs.columbia.edu

Jason Nieh

Department of Computer Science

Columbia University

nieh@cs.columbia.edu

ABSTRACT
Mobile apps make extensive use of GPUs on smartphones and

tablets to access Web content. To support pervasive Web content,

we introduce three key OS techniques for binary graphics com-

patibility necessary to build a real-world system to run iOS and

Android apps together on the same smartphone or tablet. First diplo-

mat usage patterns manage resources to bridge proprietary iOS

and Android graphics implementations. Second, thread imperson-

ation allows a single thread-specific context to be shared amongst

multiple threads using multiple iOS and Android personas. Third,

dynamic library replication allows multiple, independent instances

of the same library to be loaded in a single process to support iOS

apps on Android while using multiple graphics API versions at

the same time. We use these techniques to build a system proto-

type, and demonstrate that it runs widely-used iOS apps, including

apps such as Safari that use the popular GPU-accelerated WebKit

framework, using a Google Nexus tablet running Android.

CCS CONCEPTS
• Computing methodologies→ Graphics systems and inter-
faces; • Computer systems organization → Architectures; •
Software and its engineering → Operating systems; Runtime
environments; • Information systems → Browsers;

KEYWORDS
Android, iOS, Operating System Compatibility, Mobile Computing,

Computer Graphics, GPUs, OpenGL, Web Browsers

ACM Reference format:
Jeremy Andrus, Naser AlDuaij, and Jason Nieh. 2017. Binary Compatible

Graphics Support in Android for Running iOS Apps. In Proceedings of Mid-
dleware ’17, Las Vegas, NV, USA, December 11–15, 2017, 13 pages.
DOI: 10.1145/3135974.3135981

1 INTRODUCTION
Binary compatibility, the ability to run an application anywhere,

has been a long sought goal. Hardware virtualization solutions such

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Middleware ’17, Las Vegas, NV, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-4720-4/17/12. . . $15.00

DOI: 10.1145/3135974.3135981

as VMware are now widely used in desktop and server environ-

ments, running multiple operating system (OS) instances to run

applications (apps) built for different software ecosystems. How-

ever, mobile devices such as tablets and smartphones are changing

the way computing platforms are designed, which has important

implications for binary compatibility support. Unlike the clear sep-

aration of hardware and software concerns in the traditional PC

world, mobile platforms are highly vertically integrated platforms.

Hardware components are integrated together in compact devices

using non-standard interfaces. Software is customized for the hard-

ware, often using proprietary libraries to interface with specialized

hardware. Apps are tightly integrated with particular libraries and

frameworks, and often only available on particular hardware plat-

forms. Mobile platforms integrate a plethora of devices, such as

GPUs, that use non-standard interfaces, which are directly used

by apps to optimize performance. The lack of hardware standards

together with the resource constraints of mobile platforms have

made existing virtualization approaches unusable on smartphones

and tablets.

To address this problem, we developed Cycada [3, 4] (formerly

known as Cider), an OS compatibility architecture that runs apps

built for different mobile ecosystems, iOS or Android, together on

the same device. Cycada leverages the wide availability of open

source software and the use of standardized APIs for mobile app de-

velopment to build binary compatibility into an existing mobile OS.

Cycada mimics the ABI of a foreign OS, iOS, enabling the domestic

OS, Android, to run unmodified foreign binaries. It introduces two

new binary compatibility mechanisms, compile-time code adap-

tation, and diplomatic functions. Compile-time code adaptation

allows existing unmodified foreign (iOS) source code to be reused

within the domestic (Android) kernel, reducing implementation

effort required to support domestic and foreign binary interfaces.

A diplomat, or diplomatic function, temporarily switches the

persona of a calling thread to execute domestic code from within

a foreign app. A thread’s persona, or execution mode, selects the

kernel ABI personality and thread local storage (TLS) information

used during execution. Diplomatic functions allow foreign, iOS,

apps to leverage domestic, Android, libraries to access proprietary

hardware and software interfaces. Diplomats are more than simple

API “thunks,” “glue code,” or “trampolines.” Beyond adapting two

different API surfaces, a diplomat manages transitions between

APIs across different thread-level personas.

Previous work demonstrated the feasibility of the Cycada ap-

proach, but did not fully address the problem of binary compatibility

support for graphics acceleration as required by commonly used

frameworks such as WebKit [7], the HTML and JavaScript render-

ing engine. WebKit consists of over 5 million lines of code [11] and

55

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Jeremy Andrus, Naser AlDuaij, and Jason Nieh

heavily uses the GPU to accelerate Web page layout and rendering.

Support for WebKit is essential for mobile app performance and

functionality, as Web content is pervasively embedded in mobile

apps, not just in Web browsers. However, binary compatible graph-

ics support is a key challenge on mobile platforms because of their

vertically integrated stack of proprietary closed-source vendor li-

braries that communicate directly to the kernel or device drivers

through opaque, undocumented calls to control black-box GPU

hardware.

Providing a framework to run fully hardware-accelerated for-

eign applications natively not only allows for running iOS apps on

Android but potentially allows for running many combinations of

foreign apps on different OSes. This opens up the possibility for

many OS designers to support cross-platform software or to even

extend and compliment containers [32, 34, 40, 44].

We present a graphics-focused study of Cycada, and extend its

binary compatibility support through three new OS compatibility

techniques necessary to build a complete system able to run apps

built for different mobile ecosystems, iOS and Android, that require

complex GPU-accelerated frameworks such as WebKit, together on

the same device.

First, we extend Cycada’s basic diplomat construction to per-

form library-wide prelude and postlude operations in the context

of the foreign OS before and after domestic library usage. Using

these prelude and postlude functions, we formalize four diplomat
usage patterns, direct, indirect, data-dependent, and multi, which to-

gether provide the complex and rigorous management of resources

necessary for bridging between proprietary iOS and Android imple-

mentations of complex real-world graphics APIs, such as OpenGL.

Second, we introduce thread impersonation which allows thread-

specific context to be shared among multiple threads running under

multiple personas. A thread impersonating another thread temporar-

ily takes on the identity of another thread to perform an action that

may be thread-dependent.

Third, we load multiple, independent instances of a single library

within the same process through dynamic library replication (DLR).

DLR enables a dynamic linker to create separate loaded instances

of a dynamic library in a process with unique virtual addresses for

each instance of every symbol in the library including global and

initialization data.

We extend Cycada with these three techniques to provide binary

compatible support for the OpenGL ES (GLES) standard available

on both iOS and Android, and heavily used by frameworks such

as WebKit. While GLES is standardized, it relies on other graphics

infrastructure such as graphics resource management to manage

the state information, commands, and resources needed to draw

using GLES, and this may not be standardized. Furthermore, the

GLES standard is intended to be extensible, and vendor libraries and

GPU hardware are free to implement new or any subset of available

extensions. These three techniques are used to allow Cycada’s
graphics compatibility mechanisms to bridge differences in GLES

implementations across the platforms.

We extend the Cycada prototype, and demonstrate its effective-

ness in enabling widely-used iOS apps such as Safari that make

extensive use of WebKit to run on Android with reasonable graph-

ics performance. We also demonstrate through detailed micro-

benchmarks that Cycada provides robust binary compatible graph-

ics device support across a broad range of graphics functions. Our

detailed study, new OS compatibility techniques, experimental re-

sults, and our overall experiences building binary compatible graph-

ics devices support are also useful for other approaches such as

virtualization in the context of mobile platforms.

Our experiences with Cycada show that our compatibility mech-

anisms, diplomat usage patterns, thread impersonation, and DLR,

are key to supporting graphics binary compatibility. Our study

shows: (1) Real-world graphics implementations vary greatly be-
tween platforms. Although the GLES API is standardized, both iOS

and Android take advantage of GLES extensions such that more

than half of the extensions used in one platform are not available

in the other. Each extensions adds API entry points or modifies the

behavior of an existing API. GPU binary compatibility or virtual-

ization approaches that perform simple API forwarding or basic

API thunks will not work for these mobile platforms due to the

large differences between the resulting extended APIs. Despite their

GLES differences, it is possible to map iOS GLES to Android GLES.

Most iOS GLES functions, including extension functions, can be

supported by leveraging one or more Android GLES functions via

diplomat usage patterns. (2) iOS and Android have substantially
different graphics resource management APIs. Graphics rendering
APIs such as GLES require display and memory management APIs

to provide window and memory management. iOS uses an Apple-

proprietary API, EAGL, while Android uses the standardized EGL

API. These APIs are different enough that running iOS apps on

Android requires reimplementing Apple’s EAGL APIs, which also

requires reverse engineering the EAGL library in the absence of

access to non-public Apple specifications and source code. Fortu-

nately, the EAGL API is small, and many functions can leverage

aspects of Android’s EGL through a combination of diplomat us-

age patterns and DLR. However, Android provides an incomplete

key EGL extensions which complicates its use. (3) iOS graphics
libraries are designed for multi-threaded use that is not supported in
Android’s graphics libraries. Cycada uses thread impersonation and

DLR to allow Android threads to impersonate iOS graphics threads.

Each thread uses diplomats to access multiple, isolated instances

of the Android graphics libraries. The isolated graphics libraries

and thread impersonation allow each Android thread to perform

thread-specific actions and support multi-threaded iOS graphics

functionality. (4) iOS provides richer support than Android for multi-
ple GLES API versions. Both platforms support multiple GLES API

versions which are useful for different purposes but incompatible.

However, iOS allows multiple GLES versions to be used simultane-

ously by different threads in the same process while Android does

not. This is widely used by multi-threaded iOS apps. For example,

an iOS game may use GLES v1 APIs to render game graphics, but

use a WebKit view to render an HTML “about” page which uses

GLES v2 APIs. Cycada uses DLR to support iOS apps using multiple

GLES API versions on Android.

56

Binary Compatible Graphics Support in Android for Running iOS Apps Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

I/O Kit

Mach IPC

OpenGL ES CoreGraphics

GPU

QuartzCore / CoreAnimation

UIKit

CPU

IOCoreSurface

XNU Kernel

iOS
User

Space

IOMobileFramebufferGPU Driver

Hardware

IOSurface

EAGL API

Figure 1: Overview of iOS Graphics

2 IOS AND ANDROID GRAPHICS OVERVIEW
Modern graphics subsystems can be broken into three major com-

ponents: rendering or drawing, display and window management,

and memory management. On mobile platforms such as iOS and

Android, the most widely-used subsystem for GPU-accelerated

graphics is often loosely referred to as GLES. However, the GLES

API [29, 31] is more properly thought of as a rendering, or drawing,

API. GLES takes no responsibility for display and window manage-

ment. To bridge between the rendered output of GLES and what

is shown, GLES relies on the Embedded-System Graphics Library

(EGL) API. A native window API such as EGL can be thought of

as the canvas GLES draws on. GLES/EGL objects require memory

to store graphics state. The memory management, done by the OS,

usually involves a separate OS-specific API, allowing the resulting

memory objects to be efficiently shared between apps or between

different drawing APIs, such as OpenGL and non-OpenGL APIs.

To understand how GLES is supported in iOS and Android, we

first review some basics. A GLES object is an opaque structure

that refers to memory objects which store graphics data (e.g. ren-

derbuffers, framebuffers, and textures). A GLES context is a state
container for all GLES objects associated with a given instance of

GLES. When a thread calls a GLES function, the function is called

in a GLES context to manipulate a GLES object. A thread can cre-

ate many GLES contexts. Because there are multiple versions of

GLES which have different characteristics and are not compatible

with each other, an EGL context, created with the EGL native win-

dow management API, defines the rendering API version used, and

therefore the set of GLES functions that can be used within that

EGL context.

Figure 1 provides an overview of the major graphics compo-

nents in iOS. iOS apps use user space libraries such as UIKit and

CoreAnimation to render user content, such as buttons, text, and

images, using CoreGraphics and GLES system libraries. These sys-

tem libraries communicate directly to the iOS kernel via opaque

Mach IPC calls, and use I/O Kit drivers to allocate and share graph-

ics memory, control hardware facilities such as frame rates and

subsystem power, and perform complex rendering tasks such as

Binder IPC

OpenGL ES

HW Composer / gralloc HAL

GPU

Surface Textures

Surface Flinger

CPU

GraphicBuffer

Linux Kernel

Android
Native
APIs

Framebuffer DriverGPU Driver
(gralloc support)

Hardware

android.graphics.canvas

android.opengl

GraphicBuffer

Android
Java APIs

EGL API

Figure 2: Overview of Android Graphics

those required for 3D graphics. For 3D rendering and drawing, iOS

uses the standard GLES API. For display and window management,

Apple devised a non-standard native window API, Embedded Apple

GL (EAGL). The iOS GLES library renders content into a window or

display managed by the EAGL library. For memory management,

all graphics memory is allocated and manipulated through the IO-

Surface API which communicates via opaque Mach IPCmessages to

the IOCoreSurface I/O Kit driver. An IOSurface object is a memory

abstraction that facilitates zero-copy transfers of large graphics

buffers between apps and rendering APIs. Most GLES objects, such

as textures, reference IOSurface memory objects for storing graph-

ics data. For 2D graphics, the CoreGraphics or QuartzCore APIs

are used to draw directly into IOSurfaces. IOSurfaces from both

CoreGraphics and GLES are composited together using the IOMo-

bileFramebuffer kernel driver, again accessed as an I/O Kit driver

via opaque Mach IPC calls. These calls are IPC messages where

both client and server ends of the communication hide or obfuscate

the details of messages passed.

Figure 2 provides an overview of the major graphics components

in Android. Android Java apps use the android.graphics.canvas and

android.opengl APIs to render both 2D and 3D graphics. These

Java APIs make extensive use of Java native calls to system libraries

which communicate to the Android Linux kernel via opaque ioctls
and Binder IPC. Opaque ioctls are ioctl system calls on a pro-

prietary driver where both the command and the arguments are

intentionally obfuscated or hidden creating an opaque interface

into the kernel. For rendering and drawing, Android uses the stan-

dard GLES API. All 3D drawing is done via GLES, and as of Android

4.0, all 2D drawing is also accelerated by GLES [47]. For display

and window management, Android uses the Khronos standard-

ized EGL [30] API, unlike the proprietary EAGL used by iOS. The

Android GLES library renders content into a window or display

managed by the EGL library. For memory management, all graph-

ics memory is managed by the GraphicBuffer API, and allocated

through the HWComposer or gralloc APIs which use non-standard,

often opaque, Linux kernel driver interfaces. Similar to iOS, An-

droid GraphicBuffer objects facilitate cross-process and cross-API

57

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Jeremy Andrus, Naser AlDuaij, and Jason Nieh

zero-copy memory transfers. Unlike their IOSurface counterparts

in iOS, GraphicBuffer objects are a much lower-level abstraction

managed by the Surface Texture API. Surface Textures are used

by both 2D and 3D drawing APIs, and are composited together by

the Surface Flinger which uses the HW Composer API and Linux

kernel framebuffer driver.

3 CYCADA GRAPHICS ARCHITECTURE
Graphics binary compatibility support in Android for iOS is a key

challenge because the graphics subsystems in both OSes are driven

by closed-source libraries that discard all abstractions and com-

municate directly with kernel drivers through opaque, undocu-

mented Mach IPC calls and ioctls, which in turn control complex,

black-box pieces of hardware. Given the tight coupling of user

space libraries to opaque, undocumented kernel APIs, rewriting

any libraries or drivers, or emulating hardware would be at best

an enormous and difficult reverse engineering effort attempting

to keep up with product development cycles of large companies.

Alternatively, any attempt to interpose on the kernel ABI would be

useless without understanding the driver-specific ioctl commands

or opaque Mach IPC messages.

At a high level, Cycada addresses this problem by leveraging the

fact that the GLES standard is used across mobile platforms. Loosely

speaking, instead of having iOS apps use their own iOS GLES li-

braries, Cycada has them use Android GLES libraries through diplo-

mats [4]. Diplomats allow foreign apps to use domestic libraries to

access proprietary software and hardware interfaces on the device.

In Cycada, a thread has two personas, or execution modes, a foreign

one for executing foreign code with a foreign kernel ABI (iOS) and

a domestic one for executing domestic code with a domestic kernel

ABI (Android). A diplomat function temporarily switches the per-

sona of a calling thread to execute domestic code in a foreign app,

or vice-versa. Using diplomats, Cycada replaces calls into foreign

hardware-managing libraries (e.g. GLES) with calls into domestic

libraries managing domestic GPU hardware. Each diplomat maps

iOS functionality onto equivalent Android functionality.

We extend the basic Cycada diplomat construction to include a

prelude and postlude operation in the context of the foreign persona.

Before our extended diplomats switch the persona of the calling

thread, they invoke a prelude function that executes in the foreign

persona. After invoking the domestic function and switching the

persona of the calling thread back to the foreign persona, our new

diplomats invoke a postlude function in the context of the foreign

persona. These prelude and postlude functions allow Cycada to

support the necessary multiplexing of multiple loaded instances of

a single Android graphics library (Section 8).

The complete process of calling a domestic function from foreign

code through a diplomat is: (1) Upon first invocation, a diplomat

loads the appropriate domestic library and locates the required

entry point (function), storing a pointer to the function in a locally-

scoped static variable for efficient reuse. (2) A prelude function

executes foreign code using the foreign persona. This function is

common to all diplomats and specified at compile time. (3) Argu-
ments to the domestic function call are stored on the stack. (4) A
new set_persona system call is invoked from the foreign persona

to switch the calling thread’s kernel ABI and TLS area pointer to

iOS App
QuartzCore,

CoreGraphics...

Android Linux Kernel LinuxCoreSurface

Android
OpenGL ES,
EGL, gralloc

Linux Display Driver

IOMobileFramebuffer
wrapper

Linux GPU
driver + gralloc

libui_wrapper

EAGL API

libEGLbridge

OpenGL ES

IOSurface

OpenGL ES
Bridge Logic

Figure 3: Cycada iOS Graphics Compatibility

their domestic persona values. (5) Arguments to the domestic func-

tion call are restored from the stack. (6) The domestic function call

is directly invoked through the symbol stored in step 1. (7) Upon
return from the domestic function, the return value is saved on the

stack. (8) The set_persona syscall is invoked from the domestic

persona to switch the kernel ABI and TLS area pointer back to

their foreign persona values. (9) Any domestic TLS values, such

as errno, are appropriately converted and updated in the foreign

TLS area. (10) A postlude function executes foreign code using the

foreign persona based on the foreign library being replaced. This

function is common to all diplomats and specified at compile time.

(11) The domestic function’s return value is restored from the stack,

and control is returned to the calling foreign function.

Using diplomat usage patterns, thread impersonation, and dy-

namic library replication, we complete the Cycada graphics com-

patibility architecture to run unmodified iOS binaries on Android.

Figure 3 depicts the components of this architecture. Components

shown in grey represent new Cycada code, components in blue rep-

resent iOS code, and components in green represent Android code.

Components containing both blue and green represent libraries

containing diplomats. The dotted lines show components which

have been enhanced and extended from the initial Cycada archi-

tecture [4]. Components can be loosely grouped based on graphics

compatibility functionality they provide, and we discuss our new

OS compatibility techniques in this logical order. Section 4 discusses

iOS GLES support implemented by the diplomatic GLES library

which includes GLES Bridge Logic to support indirect and data-
dependent diplomats. Section 5 discusses iOS display and window

management API support through a re-implemented iOS EAGL

API that leverages multi diplomats composed in the diplomatic

libEGLbridge library. Section 6 discusses iOS graphics memory

management support which is implemented using a diplomatic

IOSurface library and LinuxCoreSurface, a reimplementation of the

iOS kernel framework, IOCoreSurface. Section 7 discusses Cycada’s
multi-threaded iOS GLES support using thread impersonation.

58

Binary Compatible Graphics Support in Android for Running iOS Apps Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

OpenGL ES iOS Android Khronos
1.0 Standard Functions 145 145 145

2.0 Standard Functions 142 142 142

Extension Functions 94 42 285

Common Extension Functions 27 27 -

Extensions 50 60 174

Extensions not in Android 33 0 -

Extensions not in iOS 0 43 -

Table 1: OpenGL ES Implementation Breakdown

4 GLES
GLES is the rendering, or drawing, API used by both iOS and An-

droid, and its specification has been standardized by the Khronos

Group, so at first glance, it seems straightforward to simply replace

iOS GLES standard C-function symbols with diplomats that call

into the Android GLES library to run iOS apps. However, the GLES

standard is intended to be extensible [28], and vendor library imple-

mentations are free to implement available or even new extensions.

The set of available extensions depends on both the GPU hard-

ware and the vendor library used. Because Apple provides both

the vendor library and GPU hardware for iOS platforms, iOS GLES

implements a similar set of extensions across all iOS platforms

of a given generation. However, Android runs on a multitude of

platforms provided by many different manufacturers, so the GLES

extensions implemented can vary and depend on the particular

vendor library and GPU hardware.

Table 1 gives a summary of standard and extension GLES func-

tions implemented in iOS and Android, as well as the total numbers

reported by Khronos. The Android function list comes from a Nexus

7 tablet with an NVIDIA Tegra 3 GPU. We focus on GLES v1 and v2

standard functions, as GLES v3 is only supported by a minority of

both iOS [6] and Android [48] devices. Additionally, the table only

considers GLES functions added by extensions, not functionality

added to existing functions. Table 1 shows that iOS and Android

implement the complete set of GLES standard functions, but differ

in extensions and extension functions they implement. Therefore,

there is no possible one-to-one mapping from iOS to Android GLES

functions.

4.1 Diplomat Usage Patterns
To support the complete set of iOS GLES functions, including ex-

tensions, on Android, we taxonomize diplomat usage based on

common patterns uncovered through our study of iOS and Android

graphics. Similar to the Gang of Four’s design patterns [22], our

diplomat usage patterns allow Cycada to quickly identify recur-

ring solutions to binary compatibility problems. We formalize four

diplomat usage patterns, direct, indirect, data-dependent, and multi,
that together provide the management of resources necessary to

bridge the intricacies of two mis-matched APIs.

First, standard GLES functions not augmented by extensions can

be implemented using our extended Cycada diplomats. We refer

to these functions as direct diplomats, which use the procedure

from Section 3 to directly invoke a corresponding Android function.

For iOS functions where direct invocation of an Android function

is not possible, we introduce indirect, data-dependent, and multi

diplomats.

Type of Support Functions
Direct Diplomats 312

Indirect Diplomats 15

Data-dependent Diplomats 5

Multi-Diplomats 2

Unimplemented (never called) 10

Total 344

Table 2: Cycada iOS OpenGL ES Support Breakdown

An indirect diplomat uses a small amount of wrapper code

around a standard diplomat. The wrapper runs in the foreign, iOS,

context and can re-direct APIs to similar Android APIs with dif-

ferent names, or can manipulate input data to match an existing

Android implementation. For example, APPLE_fence [23] is an

extension implemented in iOS but not in Android. Cycada sup-

ports this extension using an indirect diplomat that maps APPLE_-

fence APIs to a similar extension, NV_fence [27], present on the

NVIDIA Nexus 7 tablet. The custom iOS code performs minor input

re-arranging within each APPLE_fence API before calling into a

corresponding Android GLES NV_fence API.

Data-dependent diplomats augment standard diplomats by per-

forming input-dependent logic or implementation before optionally

calling the Android function. For instance, if an iOS extension adds

the ability to render a new pixel format which is unsupported in

Android, GLES functions that allocate or manipulate textures would

need data-dependent diplomats that can understand the iOS tex-

ture format and manipulate it into a form understood by Android

functions. For example, the standard GLES glGetString function
in iOS has been modified by Apple to accept a non-standard param-

eter name, unknown in Android. That parameter name is intended

to return Apple–proprietary extensions available on the platform.

Cycada uses a data-dependent glGetString diplomat that inter-

prets the input parameter and either calls the Android function, or

returns a custom string indicating that no Apple-proprietary exten-

sions are available. Some data-dependent diplomats may not invoke

an Android function at all due to a lack of corresponding Android

functionality. For example, the APPLE_row_bytes [26] extension

handles two extra parameters to the glPixelStorei function and

maintains state associated with the current GLES context which

controls how three GLES functions read in or write out pixel data.

These three GLES functions are implemented using data-dependent

diplomats such that when the APPLE_row_bytes extension is being

used, Cycada reads in and writes out the packed data manually.

Finally, multi diplomats are necessary when iOS functions or

extensions do not map cleanly to a single Android function, and the

behavior is too complex for custom logic. These diplomats leverage

several different Android library functions through two or more

coalesced diplomats. Cycada uses multi diplomats to implement

window and memory management functionality discussed in Sec-

tions 5 and 6.

Table 2 indicates how effective our diplomat usage patterns

are in supporting iOS GLES on Android. The majority of GLES

functions are supported via direct diplomats, 20 GLES functions

are supported via indirect or data-dependent diplomats, and two

GLES functions require multi diplomats. While indirect diplomats

are simple, data-dependent diplomats can, in some cases, require

59

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Jeremy Andrus, Naser AlDuaij, and Jason Nieh

a hundred lines of additional code, and multi diplomats involve

the most implementation complexity. No GLES functions need to

be completely reimplemented. Ten iOS GLES functions are not

implemented in our prototype because they are never called. Note

that the total number of functions in Table 2 does not match Table 1

because the numbers in Table 1 are not mutually exclusive since

some GLES v1 and v2 standard functions are the same. This table

shows that our diplomat usage patterns successfully bridge the gap

between iOS and Android GLES APIs.

5 EAGL
Graphics resource management, including display and window

management, is done in iOS using Apple’s own EAGL Objective-C

API, but in Android using Khronos standardized EGL API. There

is no direct mapping from EAGL to EGL, requiring Cycada to im-

plement substantial logic to support EAGL. However, the Android

EGL library performs conceptually similar functions as EAGL, and

the EAGL API is small. Thus, it is possible to construct an EAGL

implementation from a combination of Android EGL and GLES

libraries using multi diplomats with a modest amount of custom

logic. For efficiency, we coalesced our multi diplomats into an An-

droid library called libEGLbridge (Figure 3). This allows us to pay
the overhead of one diplomat which calls into a custom Android

API that uses standard Android functions and libraries to perform

the required function.

The EAGL API consists of only 17 Objective-C methods. Six

methods were supported using multi diplomats, 10 required im-

plementation from scratch, and 1 was not implemented as it was

never called. The 10 EAGL functions implemented from scratch

required less than 30 lines of code in total. In contrast, the meth-

ods supported by the more complicated multi diplomats required

approximately 5000 lines of code to implement the 6 methods.

To provide clearer insight into how multi diplomats were used

to implement EAGL methods, we now describe an example under

Cycada. Care must be taken when rendering using GLES APIs.

The memory backing the render target is accessible to the window

management API and could potentially be displayed on the screen

at any time. To prevent corrupt, or half-rendered output, window

management APIs usually provide somemethod of double (or more)

buffering the output. Double buffering allows the rendering APIs

to draw into a memory buffer while the window management APIs

send a different memory buffer out to the screen.

GLES uses an object called a framebuffer to represent the ab-

stracted memory and render target provided by the window man-

agement API. The first, or default, framebuffer always represents

the display screen or window area. The standardized EGL window

management API uses the function eglSwapBuffers to swap the

rendering target of the default framebuffer between a “front” buffer

(the GLES render target) and a “back” buffer (thememory sent out to

the screen or window). In contrast, EAGL API only allows rendering

to an off-screen (non-default) framebuffer. When frame rendering

is complete, the programmer must call the presentRenderbuffer
function that copies the off-screen framebuffer into the display

screen or window area.

Since EAGL does not use the default framebuffer, the standard

Android eglSwapBufferswill not work to transfer rendered frame

data to the screen or window memory; the data was never put into

the default framebuffer’s memory. To display the contents of an

off-screen framebuffer into which an iOS app has rendered content,

Cycada implements the EAGL presentRenderbuffer function us-

ing a multi diplomat. This diplomat uses simple GLES vertex and

fragment shader programs, via Android GLES APIs, to render the

off-screen framebuffer contents into the default framebuffer. From

the default framebuffer, Cycada can use eglSwapBuffers to dis-

play the content. The current Cycada prototype uses this inefficient

implementation, but it could be improved through more compli-

cated management of underlying graphics memory or the Android

EGL/GLES libraries.

6 MEMORY MANAGEMENT
The massive size, low latency requirements, and cross–process

composition of graphics objects requires an efficient, zero–copy

mechanism that allows graphics memory to be shared between

libraries and apps. iOS uses IOSurface objects for efficient graphics

memory management. Kernel-level IOSurface support (IOCoreSur-

face in Figure 1), provides the zero-copy support which allows

IOSurface objects to be efficiently passed between libraries and

apps. IOCoreSurface kernel APIs and functionality were reverse

engineered. The resulting module is shown as LinuxCoreSurface
within the Android Linux kernel in Figure 3.

Android manages efficient graphics memory transfers using

GraphicBuffer objects. While these objects perform the same high-

level functions as iOS IOSurface objects, the IOSurface API is more

complicated and offers a richer interface for manipulating, sharing,

and remapping graphics memory. Cycada must therefore provide

a mapping between IOSurfaces and GraphicBuffers for GLES to

function correctly. In the following subsections, we discuss two key

aspects of IOSurfaces and how they are supported in Cycada.

6.1 IOSurface Life Cycle Management
IOSurfaces are created using IOSurfaceCreate, which allocates the
necessary memory buffer, and connects the allocated region to the

supporting kernel infrastructure. To provide the necessary kernel

support for advanced IOSurface memory operations, Cycada inter-
poses on IOSurfaceCreate using an indirect diplomat to create an

Android GraphicBuffer object as the underlying backing graphics

memory for an IOSurface. Similarly, as the created IOSurface is as-

sociated with GLES textures, or other library objects, Cycada uses
indirect diplomats to interpose Android GraphicBuffer manage-

ment. For example, Cycada interposes on the glDeleteTextures
API and removes any corresponding connection to the underlying

Android GraphicBuffer.

6.2 Cross-API Object Sharing
An IOSurface, much like its GraphicBuffer counterpart, can be used

by 3D as well as other 2D rendering APIs. These 2D APIs, such

as CoreGraphics, use the CPU to draw directly into IOSurfaces as

opposed to sending commands to the GPU to render content into

the memory. To allow 2D and 3D APIs to share IOSurfaces, iOS

provides the IOSurfaceLock and IOSurfaceUnlock functions to

lock and unlock an IOSurface for CPU-only access, during which

time the GPU may not access it. The Android GraphicBuffer object

60

Binary Compatible Graphics Support in Android for Running iOS Apps Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

can be locked for CPU-only access unless it has been associated

with a GLES texture (via an EGLImage). As discussed in Section 5,

iOS associates IOSurfaces, and thus GraphicBuffers, with GLES

textures for 3D drawing. Thus the exact scenario in which we need

to lock a GraphicBuffer to support IOSurfaces is unsupported by

the Android API.

To circumvent this Android limitation, Cycada interposes on

the IOSurfaceLock and IOSurfaceUnlock functions with multi

diplomats. When an IOSurface is locked, Cycada disassociates the
Android GraphicBuffer from the connected GLES texture allowing

it to be locked for CPU-only access. However, this process is non-

trivial, and unsupported by current Android GLES and EGL APIs. A

GLES texture is required to be associated with some memory object,

so while the IOSurface is locked for CPU access the Cycada multi

diplomat rebinds the GLES texture to a single-pixel buffer allocated

by glTexImage2D. The multi diplomat can then destroy the EGLIm-

age object associated with the texture which implicitly disassociates

the Android GraphicBuffer. At this point, the GraphicBuffer can

be locked for CPU access. By assuming correct IOSurface locking

behavior of the iOS app, we know that no Open GL function calls

will occur that will try to render using the texture.

Cycada also interposes on IOSurfaceUnlockwith another multi

diplomat. We create a new EGLImage object and rebind it, and the

GraphicBuffer, back to the GLES texture. Since GLES did not have

access to the IOSurface (or GraphicBuffer) while it was locked, the

disassociation and re-association process is transparent to iOS’s

GLES.

7 MULTI-THREADED GLES
GLES and EGL are used in heavily multi-threaded environments,

however there are some restrictions based on the specifications.

First, GLES functions are not thread safe, so apps are expected to

synchronize access to GLES state outside of the GLES API. Second,

an EGLContext object defines the set of GLES functions available,

and it is possible for a standards-compliant EGL implementation to

allow only a single context to be created per thread group [30]. Thus,

the accepted standard for multi-threaded apps using GLES/EGL is

to use a single thread dedicated for rendering.

iOS and Android are both heavily multi-threaded environments,

but differ in the level of GLES threading support. iOS allows any

thread to use a GLES context; one thread can create a GLES context

and another can use it. Apple’s Grand Central Dispatch (GCD) is

used heavily and relies on this feature to asynchronously dispatch

GLES jobs such as texture loading or off-screen rendering. Each

thread in the system has its own context, and implicitly takes on

the GLES and EAGL context of the thread that submitted the asyn-

chronous job. Similarly, the iOS WebKit library spawns a rendering

thread that allocates and initializes its own GLES context which

is used by other threads related to WebKit. This level of multi-

threaded support does not exist in Android GLES or EGL libraries,

which only allow a GLES context to be used by a thread if it or its

thread group leader created the context. In other words, a GLES

context created by Android thread 1 could not be used by Android

thread 2 unless thread 1 also happened to be the “main” thread.

7.1 Thread Impersonation
To support multi-threaded iOS GLES apps on Android, Cycada
introduces thread impersonation. Thread impersonation allows

thread-specific context to be shared among multiple threads en-

abling one thread to temporarily assume the persona of another

thread. While more limited forms of this impersonation have been

used in security contexts, Cycada thread impersonation presents a

generalized mechanism to impersonate a thread across all personas
in which the thread may execute. In these personas, a subset of

thread-specific data may be used or shared by the impersonating

thread.

In Cycada, iOS threads attempting to perform GLES operations

will impersonate the Android thread that created an Android GLES

context. We refer to the Android thread which created the GLES

context as the target thread, and the iOS thread that invoked a

GLES function the running thread.

Diplomats invoked by the running thread will leverage the pre-

lude and postlude functions to migrate thread local data between

the target and running threads. Android and iOS TLS state must

be migrated because the target thread created the GLES context

through a diplomat. Thus the target thread has both platforms’

graphics state in their TLS.

However, not all data in TLS needs to be migrated. TLS is an

array of void pointers unique to each persona of thread. Each array

entry is a slot. Some TLS slots are reserved for system use for things

such as a thread-local errno value, but apps can reserve other slots

using the pthread_key_create function, which returns a globally-

unique TLS slot ID. A given thread passes the returned slot ID into

the pthread_getspecific or pthread_setspecific functions to
get or set a thread-local, or thread-private, value. Cycada thread

impersonation allows selective migration of TLS data by modifying

Android’s libc to send out a notification whenever a new TLS key

is reserved through pthread_key_create and destroyed through

pthread_key_delete; this is a trivial 12 line patch. By register-

ing for a hook that is invoked on every pthread_key_create and

pthread_key_delete call, we can selectively monitor TLS slot al-

location.

BecauseCycadamigrates graphics contexts, wemonitor graphics-

specific TLS slot allocations by gating the Android pthread_key_-
create and pthread_key_delete hooks in the prelude and postlude
of each graphics diplomat. This migrates only the graphics-relevant

TLS data between the target and running thread’s Android personas.

We also migrate well-known iOS TLS slots used by Apple graphics

libraries. Since vendor graphics libraries, along with their TLS slots,

are opaque, we can assume that the TLS slots they reserve are not

used by any other subsystems.

Formally, Cycada thread impersonation for graphics is done

as follows: (1)Cycada identifies graphics-related TLS state using

pthread_key_create and pthread_key_deleteAndroid libc hooks.
(2)Whenever a GLES context is created or modified, Cycada ties it to
the graphics-related TLS of the thread that created the GLES context.

(3)Whenever a thread calls a GLES function using a GLES context it

did not create, Cycada saves the running thread’s graphics-related

TLS state, in both its iOS and Android personas, and replaces it with

TLS data associated with the GLES context. (4)Updates are made to

the TLS values as needed as the thread executes graphics functions,

61

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Jeremy Andrus, Naser AlDuaij, and Jason Nieh

and these updates are reflected back into the TLS associated with

the GLES context. (5)On GLES function return, Cycada restores the
running thread’s original graphics-related TLS state.

In Cycada, a thread has both an iOS and an Android persona,

each with its own TLS. Cycada must ensure that graphics-related

use of TLS in the iOS persona matches what is expected by iOS apps.

Generally, this is done by relying on iOS libraries to manipulate

the TLS in the iOS persona without any additional work by Cycada.
However, when a thread submits an asynchronous job to GCD,

Cycada must associate the iOS TLS data of the submitting thread

with the EAGL context so that when the GCD job is run on a

different thread, that thread’s iOS TLS can be properly updated.

With diplomats, Cycada must ensure thread migration in An-

droid is done to match the necessary iOS GLES and EAGL contexts.

For example, if thread A passes its context to thread B before calling

a diplomat, thread B must impersonate thread A in both iOS and
Android. However, iOS and Android use separate TLS areas for

execution, and only the kernel has knowledge of both TLS areas.

Thus to effect thread migration, Cycada introduces two system calls.

The locate_tls syscall can extract TLS values from any given per-

sona in which a thread has executed. Similarly, the propagate_tls
syscall pushes TLS values into any given persona. Using these two

syscalls, Cycada ensures proper GLES functionality across multi-

persona thread migration.

The GLES specification requires external thread synchronization.

By assuming that an iOS app/framework correctly synchronizes

calls to GLES functions, Cycada can guarantee that calls to the

Android GLES library, through diplomats, will be properly synchro-

nized.

8 EAGL MULTI-CONTEXT SUPPORT
The iOS EAGL library can instantiate multiple EAGLContext objects,
each with their own GLES connection. Each GLES connection can

use a different API version. For example, consider an iOS game

with an initial menu interface, and a UIWebView to render an

HTML “about” page. The UIWebView class uses the WebKit library

to render HTML which implicitly creates its own EAGLContext

object connected to GLES API v2. If the game uses GLES, it will

create its own EAGLContext object with its own connection to the

GLES API. The iOS app is free to use either GLES v2 or v1. If the
game uses GLES v1, the process has now instantiated two unique

EAGLContext objects each using a different version of the GLESAPI.

There is no EGL or Android mechanism to support this paradigm.

Only a single EGL connection to a single GLES API version can be

made per-process.

8.1 Dynamic Library Replication
To support multiple EAGLContexts in a single process, we intro-

duce dynamic library replication (DLR). At a high level, our solution

reloads and re-initializes, or re-instances, all the Android graph-

ics libraries. Each new library instance, or replica, is loaded and

linked as if no other libraries have been loaded.
1
This causes each

replica to occupy its own virtual memory space, and invoke its

own pseudo-private copies of all library functions and their de-

pendencies. A replica is a library namespace which includes all

1
We do not reload libc; all lib. instances use a single, shared libc instance.

dependent libraries. For example, the NVIDIA graphics support

library, libGLESv2_tegra.so requires the libnvrm.so library which re-

quires the libnvos.so library. Each replica of the libGLESv2_tegra.so
library would occupy its own virtual address space and it would

also link against privately loaded copies of all required libraries

such as libnvrm.so and libnvos.so.
DLR is needed because of Android’s EGL implementation, which

can be broken into two pieces: an open source library exporting

all the standardized EGL functions, and a vendor-provided, device-

specific EGL implementation. Android apps link against the open

source library, and when an app initializes the EGL interface using

the eglInitialize function, the open source library loads the

vendor-specific EGL and GLES libraries. The restriction of a single

EGL-to-GLES connection per process is seemingly arbitrary, but

enforced by both vendor and open source libraries.

Maintaining per-thread EGL connection information only par-

tially solves the problem. While individual threads in a process

can separately initialize and maintain EGL-to-GLES connections

through the open source library, the vendor provided EGL and

GLES libraries are proprietary and closed source and assume a

single, process-wide EGL connection.

To bypass arbitrary vendor restrictions on singleton EGL connec-

tions, Cycada uses DLR - a dynamic linker mechanism that loads

multiple, independent instances (replicas) of a dynamic library. Nor-

mally, on a call to dlopen the linker will not re-initialize or reload

a library if it’s already loaded. The linker will return a handle to the

previously loaded instance. The DLR-enabled linker introduces a

new function, dlforce, which opens a library (the replica), and all

its dependencies, as if they were never loaded before. The replica

and its dependencies will have unique virtual addresses, and all of

their library constructors will be called. The linker keeps track of

each replica, and the same dlforce function can be used to modify

the behavior of other linker functions such as dlsym and dlopen to
search only those libraries loaded from the given dlforce handle.
This allows library code within a replica, or its dependencies, to use

the dynamic loader normally, creating isolated trees of libraries.

8.1.1 EGL Extension: multi_context. Cycada uses DLR in the

Android EGL open source library through a custom EGL extension

named EGL_multi_context and a supporting library, libui_wrapper
(Figure 3). This extension API, shown in Figure 4, adds four new

EGL functions for creating and manipulating EGLContext objects

that maintain isolated, unique GLES connections within the same

process. The libui_wrapper library links against the vendor GLES

and EGL libraries and encapsulates other Android system libraries

which implicitly link against GLES or EGL. The eglReInitializeMC
function creates a replica of the vendor EGL and GLES libraries.

The eglSwitchMC function allows a thread to select which replica,

and thus which GLES connection, it will use by setting the thread’s

EGLContext object to the one contained within the replica.

Creating EGL and GLES replicas, through a modified Android

open source EGL library, results in unique GLES connection man-

agement challenges related to TLS. The unmodified Android EGL

library allows one EGL-to-GLES connection (EGLConnection object)
per-process, and it stores this information in a library-static global

variable. Creating replicas of the vendor EGL and GLES libraries

62

Binary Compatible Graphics Support in Android for Running iOS Apps Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

EGLBoolean egl ReInitialize MC(EGLNativeDisplayType display ,
EGLDisplay *dpy ,
EGLint *major , EGLint *minor);

EGLBoolean egl Switch MC(EGLContext new_ctx , EGLContext old_ctx);
EGLBoolean egl GetTLS MC(void **tls_vals , int nvals);
EGLBoolean egl SetTLS MC(void **tls_vals , int nvals);

Figure 4: Custom EGL Extension: EGL_multi_context

allows multiple threads to use different EGLConnections concur-

rently. A single, global EGLConnection variable no longer suffices,

so EGL_multi_context stores this per-thread EGLConnection object

in the TLS. A common paradigm in GLES programming is to cre-

ate a context on one thread (generally the main thread), and pass

the context information to another thread that performs render-

ing or texture loading functions. Because the EGL_multi_context
extension has moved the previously global GLES connection infor-

mation into a thread-local variable, we require the ability to copy,

ormigrate, TLS values between threads. This is accomplished using

thread impersonation with eglGetTLSMC/eglSetTLSMC extension
functions.

8.2 Unintended Consequences
Moving data from a global location into thread-specific variables,

and creating multiple copies of the same library can have unin-

tended consequences. Cycada’s EAGL implementation relies on a

custom library, libEGLbridge (Section 5), that provides targeted

Android functionality through a set of diplomats. This library

uses Android GraphicBuffer objects which use APIs from vendor-

proprietary libraries that link against the libraries used by the

vendor-proprietary EGL/GLES libraries. The mechanism by which

GraphicBuffer memory is shared between APIs requires that those

APIs use the same GLES connection as the GLES rendering func-

tions. In other words, a GraphicBuffer allocated by libEGLbridge

using the first instantiation of the EGL and GLES libraries can-

not be used by GLES functions in replicas created by multiple iOS

EAGLContexts.

To avoid the library dependencies morass, Cycada separates the
libEGLbridge functionality into two pieces. The first piece contains

all the diplomats used by the iOS code, and avoids linking against

libraries. The second piece, “libui_wrapper,” contains all of the

logic that links against Android graphics libraries. When a new

EAGLContext object is created, a diplomat in libEGLbridge creates

a replica of the libui_wrapper library and the EGL/GLES libraries by

using the prelude functionality of diplomats. That way, the libui_-

wrapper functionality uses the same replica of GLES as the gralloc

functions allocating a GraphicBuffer.

9 EVALUATION
We have extended the Cycada prototype [4], to more completely

bridge the differences between iOS and Android graphics subsys-

tems. Our extended prototype runs widely used iOS apps on An-

droid, including those that make extensive use of WebKit, such as

the Apple-only apps Safari and iBooks, and third-party apps Yelp,

Holy Bible, and Wikipedia. Support for other devices such as GPS

and networking is also completely functional, so apps such as Yelp

can be used to find local restaurants. We present some experimen-

tal results that both demonstrate the feasibility of our approach

and measure its performance using both app-level benchmarks and

targeted micro-benchmarks. We used Cycada on a Nexus 7 tablet

with Android 4.2.2, and compared its performance with an iPad

mini running iOS 6.1.2.

iOS WebKit Functionality: We first ran the iOS Safari Web

browser on Cycada to demonstrate its functionality. Safari is an

excellent test app because it uses a wide range of complex graphics

functionality via WebKit. While advanced graphics APIs, such as

GLES, are often thought of exclusively in the context of games

or third-party apps, GPUs and their associated APIs are also used

to accelerate many different aspects of computation. For example,

WebKit uses CoreImage, QuartzCore, CoreGraphics, and IOSurface

libraries in iOS which together use GLES to accelerate image and

graphics processing. Additionally, the deep vertical integration of

iOS allows library designers, as opposed to third-party develop-

ers, to bypass standard GLES extension query mechanisms, and

make simplifying assumptions about available GLES extensions.

Our prototype supports these implicit assumptions by mapping

missing extension functionality onto existing Android GLES func-

tions. Thus, running an app such as Safari in Cycada requires a

near-complete GLES bridge implementation.

We performed two sets of experiments. First, we used Safari to

browse the main page of the top 30 websites in the US [1] and

compared the visual results of Safari running on Cycada on a Nexus

7 tablet with Safari running on an iPad mini. All top 30 websites

rendered their content correctly and appeared visually similar to the

respective content on the iPad mini. Second, we used Safari to run

the Acid3 test [51], a Web test page from the Web Standards Project

that checks browser compliance with Web standards, including

Document Object Model (DOM) and JavaScript. Safari on Cycada
passes the test, showing smooth animation, a score of 100/100, and

having the final page look exactly, pixel for pixel, like the reference

rendering.

Performance: We compared four different Android and iOS

system configurations to measure the performance of Cycada: iOS
app running on Cycada (Cycada iOS), Android app running on

Cycada (Cycada Android), iOS app running on iOS (iOS), Android

app running on Android. We normalize our results to the Android

app running on Android. A Nexus 7 tablet with Android 4.2.2 was

used in all cases except for iOS app on iOS which was run on an iPad

mini. Both tablets were released around the same time frame and

have a similar form factor, providing a useful point of comparison.

We first ran a simple set of micro benchmarks using the lmbench
test suite to measure the raw overhead of using diplomats. A diplo-

mat involves two system calls: one to switch the thread from the

iOS persona to Android persona, and one to switch back. We first

63

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Jeremy Andrus, Naser AlDuaij, and Jason Nieh

Null Syscall Diplomatic Calls
System Time Function Call Time
Stock Android 225 ns Standard Function 9 ns

Cycada Android 244 ns Diplomat 816 ns

Cycada iOS 305 ns Diplomat +Pre/Post 828 ns

iPad mini iOS 575 ns Diplomat + GL Pre/Post 933 ns

Table 3: Kernel-level / ABI Micro-Benchmarks

ran the null system call lmbench micro-benchmark which invokes

system calls that perform no work within the kernel. Using Cy-
cada, we then ran a custom micro-benchmark using the lmbench
infrastructure that measures the time to invoke a standard iOS

function, a diplomat with no prelude or postlude, a diplomat with

an empty prelude and postlude, and a diplomat using the Cycada
GLES prelude and postlude functions.

Table 3 shows the results of our kernel andABImicro-benchmarks.

For all tests run on the Nexus 7, the CPU was pinned to 1.3HGz.

Since there is no interface to pin the CPU frequency in iOS, we used

lmbench to “warm up” the caches, and ramp the CPU frequency to

its maximum of 1GHz. The null syscall results on all configurations

show that Cycada adds about 8% overhead to an Android kernel

trap and 35% to an iOS trap due to an unoptimized kernel entry

path. The iPad mini had a higher cost to trap into the kernel due

primarily to the protection logic guarding against return-to-user

attacks [8]. The diplomatic call results show that standard function

calls are much faster than system calls and diplomats. The addi-

tional prelude and postlude mechanisms introduced by Cycada add
little overhead to diplomats without them, and the fully functional

GLES prelude and postlude cost roughly 100ns. A GLES diplomatic

call costs almost the same as three system calls.

We then used two app benchmarks that could be run on both

Android and iOS: a Web browser running SunSpider [5], and the

PassMark [41, 42] app. SunSpider is a widely-used JavaScript bench-

mark that stresses many aspects of the browser’s JavaScript engine

including bit operations, cryptography, raytracing, JSON input, and

pure math. We ran SunSpider using Safari on Cycada and iOS, and

Chrome, the default browser, on Cycada and Android. PassMark is

a freely available, cross-platform benchmark suite, and we used its

2D and 3D tests to measure graphics performance. We ran the iOS

PassMark app on Cycada and iOS, and the Android PassMark app

on Cycada and Android.

Figure 5 shows the SunSpider latency measurements normalized

to the performance of the stock Android browser on Android. Lower

numbers are better. The Android browser on Cycada and Safari

on iOS perform similar to the stock Android browser on Android.

However, Safari on Cycada is more than four times slower overall,

and over ten times slower for “access” and “bitops” tests. This slow-

down mostly results from a lack of Just-In-Time (JIT) compilation

of JavaScript on Cycada due to a Mach VM memory bug in Cycada
that prevents JIT from working properly. For comparison, the pur-

ple bar in Figure 5 shows results for disabling JIT for JavaScript

on iOS, normalized to iOS performance. Disabling JIT results in

a 4.2x slowdown on iOS relative to standard iOS. This is roughly

equal to the 4.4x slowdown on Cycadawith the additional overhead

resulting from our unoptimized system call path (Table 3). The high

overhead of running SunSpider without JIT, especially in the “regex”

test, generally falls in line with measurements done by the WebKit

team on the first introduction of ARM JIT [52], and subsequent

speedups introduced by the data flow graph (DFG) JIT [20].
2

Figure 7 shows a breakdown of the Android GLES functions

called while running SunSpider in Safari on Cycada. Note that the
SunSpider test itself does not invoke graphics functions, rather

the WebKit framework uses GLES to render the resulting dynamic

HTML output. We show the percentage of time consumed by each

GLES function relative to the total time consumed by all GLES

functions, with the functions ordered in descending order based

on how much total time they consume in running the benchmark.

We show the top 14 functions, which consume over 90% of the

total time. Function names starting with gl correspond to direct,

indirect, or data-dependent diplomats to Android GLES functions,

names starting with egl correspond to multi diplomats to Android

EGL functions, and names starting with aegl are custom multi

diplomats, located in libEGLbridge, supporting the Cycada EAGL
implementation (Section 5 and Figure 3). Approximately 40% of

the graphics-related time is spent in EAGL implementation related

functions such as aegl_bridge_draw_fbo_tex. Clearly there is

room for improvement in our unoptimized prototype.

Figure 9 shows average execution time per function call for the

same GLES functions in Figure 7. Of the top 14 functions, only 1

costs less than 10µs, and the most time consuming functions take,

on average, over 300µs. Since Table 3 shows the cost of a diplomatic

call is less than 1µs, the overhead due to diplomats is small for

most GLES functions, and certainly small for GLES functions that

account for most of the GLES execution time in running SunSpider

in Safari. The dominant cost is in the graphics logic required to

bridge between iOS and Android, not in the diplomat mechanism.

Figure 6 shows the PassMark 2D and 3D graphics measurements

normalized to the performance of the stock Android app onAndroid.

Higher numbers are better. This measurement generally matches

the PassMark graphics measurements first reported in [4]. However,

through the enhanced graphics support we described, and some

preliminary optimizations of the prototype, Cycada now outper-

forms Android in the GPU-intensive complex 3D test by more than

20% running on the same Nexus 7 tablet. Some of this performance

increase could also be attributed to slight variations in how the 3D

scenes were rendered on each platform, or differences in the exact

GLES calls made on either platform due to differences in supported

GLES extensions.

Similar to results found in [4], all the PassMark graphics mea-

surements show that Cycada iOS performance relative to Android

is highly correlated to iOS performance relative to Android, even

though Cycada is running on the Nexus 7 while iOS is running on

the iPad mini. For the 2D tests in which stock iOS does significantly

worse than stock Android, Cycada iOS also does significantly worse
than Cycada Android. In the complex vectors and 3D tests in which

stock iOS does noticeably better than stock Android, Cycada iOS
also does noticeably better. The reason for this is that both Cycada
and iOS use the same frameworks and libraries, which in some

cases have better performance than Android and in some cases are

worse. Comparing Cycada and iOS, we see that Cycada performs

2
The optimizations in the WebKit FTL JIT article [20] were not implemented in the

WebKit we use, however the article presents DFG JIT performance vs. baseline JIT

which indicates more than 3x speedup vs. baseline and 30x vs. non-JIT on at least one

representative benchmark.

64

Binary Compatible Graphics Support in Android for Running iOS Apps Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA
No

rm
al

ize
d

O
ve

rh
ea

d
(lo

w
er

 is
 b

et
te

r)

0
1
2
3
4
5
6
7
8
9

10
11
12

3D
ac

ce
ss

bito
ps

co
ntr

olfl
ow

cry
pto

date math
reg

ex
p

str
ing To

tal

Cycada iOS
Cycada Android
iOS
iOS (JavaScript JIT disabled)

1624

Figure 5: SunSpider Benchmarks

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (h
ig

he
r i

s
be

tte
r) Cycada iOS

Cycada Android
iOS

Figure 6: PassMark Graphics Benchmarks

0.61%

0%

5%

10%

15%

20%

25%

glF
lus

h

ae
gl_

brid
ge

_d
raw

_fb
o_

tex

eg
lSwap

Buff
ers

glD
ele

teT
ex

tur
es

glD
raw

Elem
en

ts

ae
gl_

brid
ge

_m
ak

e_
cu

rre
nt

glT
ex

Sub
Im

ag
e2

D

glB
ind

Fra
meb

uff
er

ae
gl_

brid
ge

_se
t_t

ls

glV
ert

ex
Attri

bPoin
ter

glC
lea

r

glL
ink

Prog
ram

ae
gl_

brid
ge

_c
op

y_t
ex

_b
uf

glB
ind

Tex
tur

e

Pe
rc

en
ta

ge
 o

f T
ot

al
 E

xe
cu

tio
n

Ti
m

e

Figure 7: SunSpider Total Time % per Function

1.11%

0%

5%

10%

15%

20%

25%

30%

35%

40%

glD
raw

Arra
ys

glC
lea

r

ae
gl_

brid
ge

_d
raw

_fb
o_

tex

eg
lSwap

Buff
ers

ae
gl_

brid
ge

_c
op

y_t
ex

_b
uf

glB
ind

Tex
tur

e

glF
lus

h

glD
raw

Elem
en

ts

glR
ota

tef

glT
ran

sla
tef

glP
us

hM
atr

ix

glD
isa

bleC
lien

tStat
e

glP
op

Matr
ix

glE
na

bleC
lien

tStat
e

Pe
rc

en
ta

ge
 o

f T
ot

al
 E

xe
cu

tio
n

Ti
m

e

Figure 8: PassMark Total Time % per Function

better than iOS on the 2D tests and worse on the 3D tests. Because

the 2D tests make heavier use of the CPU, Cycada outperforms iOS

because it uses the faster Nexus 7 CPU versus the slower iPad mini

CPU. Because the 3D tests are highly GPU intensive, they provide

a better indicator of the graphics overhead of Cycada compared

to iOS. The simple 3D test has higher overhead as it is designed

to maximize frame-rate and thus stresses our unoptimized EAGL

implementation which is responsible for moving rendered scenes

onto the display. The complex 3D tests involve more processing

intensive GPU functions to render complex scenery, so since the

GLES calls used are more expensive, the overhead of Cycada is less.
Figures 8 and 10 show the percentage of total GLES execution

time and average execution time per GLES function, ordered from

the function with the largest to the smallest total execution time.

We show the top 14 functions, which consume over 90% of the total

time. The twomost heavily used GLES functions are glDrawArrays,
which draws an array of vertices, and glClear, which clears the

framebuffer. Both are standard GLES functions, heavily used by

the simple and complex 3D tests, called via direct diplomats. Based

on their average execution time shown in Figure 10 relative to the

cost of diplomats shown in Table 3, diplomat overhead is small.

The primary overhead of Cycada is due to functions such as aegl_-
bridge_draw_fbo_tex and aegl_bridge_copy_tex_buf, which
consume roughly 20% of the GLES execution time. These functions

correspond to a highly optimized hardware supported path in iOS

on the iPad mini.

10 RELATEDWORK
Many different approaches have been proposed to run apps from

multiple OSes on the same hardware [2, 9, 12, 15, 17–19, 21, 24,

25, 34, 35, 38, 39, 43]. However, as discussed [4], graphics support

remains a challenge. Various approaches rely on the assumed ubiq-

uity of X Windows, and assume that apps simply conform to the X

Windows standard. This is insufficient to support GPU-intensive

apps that rely on a wide range of graphics support, and is not ap-

plicable to the vertically integrated, proprietary graphics stacks

common on mobile platforms in lieu of X. Wine, a Windows API

reimplementation project for Linux, provides incomplete support

65

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Jeremy Andrus, Naser AlDuaij, and Jason Nieh

506

922
 807

338

43
 142
 118
 44
 16
 2

939

3349

359

7

0

500

1,000

1,500

2,000

2,500

3,000

3,500

glF
lus

h

ae
gl_

brid
ge

_d
raw

_fb
o_

tex

eg
lSwap

Buff
ers

glD
ele

teT
ex

tur
es

glD
raw

Elem
en

ts

ae
gl_

brid
ge

_m
ak

e_
cu

rre
nt

glT
ex

Sub
Im

ag
e2

D

glB
ind

Fra
meb

uff
er

ae
gl_

brid
ge

_se
t_t

ls

glV
ert

ex
Attri

bPoin
ter

glC
lea

r

glL
ink

Prog
ram

ae
gl_

brid
ge

_c
op

y_t
ex

_b
uf

glB
ind

Tex
tur

e

Av
er

ag
e

Ti
m

e-
pe

r-c
al

l (
μs

)

Figure 9: SunSpider Average Time per Function

50

2014

2285

1228

2133

5

536

39
 3
 2
 2
 2
 2
 2

0

500

1,000

1,500

2,000

2,500

glD
raw

Arra
ys

glC
lea

r

ae
gl_

brid
ge

_d
raw

_fb
o_

tex

eg
lSwap

Buff
ers

ae
gl_

brid
ge

_c
op

y_t
ex

_b
uf

glB
ind

Tex
tur

e

glF
lus

h

glD
raw

Elem
en

ts

glR
ota

tef

glT
ran

sla
tef

glP
us

hM
atr

ix

glD
isa

bleC
lien

tStat
e

glP
op

Matr
ix

glE
na

bleC
lien

tStat
e

Av
er

ag
e

Ti
m

e-
pe

r-c
al

l (
μs

)

Figure 10: PassMark Average Time per Function

for Microsoft’s advanced graphics API, DirectX, on top of Linux

using OpenGL functions. This is in contrast to Cycada which lever-

ages existing iOS frameworks and libraries instead of requiring a

massive reimplementation effort.

Desktop virtualization solutions have developed several solu-

tions that allow guest VMs to use GPU acceleration through medi-

ated access to host hardware resources and libraries. These solutions

can be grouped into four basic categories: API remoting or forward-

ing, device emulation, split-mode or mediated pass-through drivers,

and direct pass-through. Desktop or server API remoting [45] (“in-

direct rendering”) solutions, such as VirtualGL [49], rely on desktop

windowing protocols such as GLX [53] to stream OpenGL com-

mands to a remote server for execution. Mobile OSes such as iOS

discard abstractions such as GLX in favor of custom APIs targeted

for mobile usage patterns and low-latency direct hardware com-

munication. Similarly, API forwarding solutions rely on being able

to forward API calls to another platform because they share the

same API. However, mobile OSes such as iOS use some standards,

but not others, and the ones they use, they may extend, such that

there is no longer a complete, shared API to forward from iOS to

Android, making API forwarding or remoting problematic.

Device emulation is only used for simple, 2D hardware [10]

due to the massive complexity of GPU hardware. The approach is

more problematic on resource constrained mobile platforms such

as iOS with proprietary interfaces that would be difficult to reverse

engineer and emulate.

Split-mode, ormediated pass-through, solutions such as VMGL [33],

VMware’s vGPU [16, 46], and XenGT [50], take a hybrid approach of

forwarding some aspects of the guest API, direct mapping some host

GPU resources, and emulating other aspects of a graphics driver.

The difficulty of emulation depends in part on the API supported.

For example, VMware’s approach focuses on Direct3D, which re-

quires apps to perform their own graphics resource management

and lacks the additional challenges of GLES support which requires

EGL, or for iOS, a proprietary EAGL.

Direct pass-through solutions, such as NVIDIA GRID [37], lever-

age traditional hardware virtualization and require specialized hard-

ware available in desktop-class GPUs [36]. They rely on hardware

support not available in mobile platforms, and do not address the

problems with providing graphics device support for mapping ver-

tically integrated graphics stacks (e.g. iOS) to other platforms.

Although none of these approaches by themselves can support

graphics device support across mobile platforms such as iOS and

Android, many facets of Cycada may be adapted and applied in the

context of these other approaches. For example, to enable mobile

graphics virtualization, API forwarding could leverage some of the

mechanisms introduced by Cycada to provide similar graphics sup-

port for VMs. The primary difference in applying these techniques

would be some of the performance costs. For example, a hosted mo-

bile graphics virtualization solution based on KVM/ARM [13, 14]

would require a world-switch that could cost thousands of cycles,

in contrast to using diplomats to switch between thread personas

from iOS to Android at a lower cost of a couple of system calls.

11 CONCLUSIONS
We have presented a graphics-focused study of Cycada, and ex-

tended its binary compatible graphics support for running iOS apps

on Android through three new OS compatibility mechanisms: (1)
extended diplomat construction and new diplomat usage patterns,

direct, indirect, data-dependent, and multi, (2) thread imperson-

ation which allows one thread to temporarily assume the persona

of another thread, and (3) dynamic library replication which allows

the linker to create separate loaded instances of a dynamic library.

These mechanisms proved essential to support our prototype in

running widely used iOS apps, many of which utilize WebKit and

other frameworks that rely heavily on the GPU. We discussed our

experiences with these mechanisms in the context of GPU device

support, and demonstrated their feasibility by using iOS’s Safari

on Cycada to visit popular websites and run browser benchmarks.

12 ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-1717801, CNS-

1563555, CNS-1422909, and CCF-1162021.

66

Binary Compatible Graphics Support in Android for Running iOS Apps Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

REFERENCES
[1] Alexa Internet, Inc. Alexa - Top Sites in United States. http://www.alexa.com/

topsites/countries/US, Apr. 2014.

[2] Amstadt, B., and Johnson, M. K. Wine. Linux Journal (Aug. 1994).
[3] Andrus, J. Multi-Persona Mobile Computing. PhD thesis, Columbia University,

Feb. 2015.

[4] Andrus, J., Van’t Hof, A., AlDuaij, N., Dall, C., Viennot, N., and Nieh, J.

Cider: Native Execution of iOS Apps on Android. In Proceedings of the 19th
International Conference on Architectural Support for Programming Languages
and Operating Systems (Mar. 2014), ASPLOS 2014, pp. 367–382.

[5] Apple, Inc. SunSpider 1.0.2 JavaScript Benchmark. https://www.webkit.org/

perf/sunspider/sunspider.html, 2013.

[6] Apple, Inc. iOS Device Compatibility Reference: OpenGL ES Graphics.

https://developer.apple.com/library/ios/documentation/DeviceInformation/

Reference/iOSDeviceCompatibility/OpenGLESPlatforms/OpenGLESPlatforms.

html#//apple_ref/doc/uid/TP40013599-CH106-SW1, Feb. 2014.

[7] Apple, Inc. The WebKit Open Source Project. http://www.webkit.org/, Apr.

2014.

[8] Apple Kernel Engineer. Personal Communication, Mar. 2014.

[9] Baumann, A., Lee, D., Fonesca, P., Glendenning, L., Lorch, J. R., Bond, B.,

Olinsky, R., and Hunt, G. C. Composing OS Extensions Safely and Efficiently

with Bascule. In Proceedings of the 8th ACM European Conference on Computer
Systems (Apr. 2013), EuroSys 2013, pp. 239–252.

[10] Bellard, F. QEMU, A Fast and Portable Dynamic Translator. In Proceedings of
the 2005 USENIX Annual Technical Conference (Apr. 2005), USENIX ATC 2005,

pp. 41–46.

[11] Black Duck Software, Inc. WebKit Open Source Project on Ohloh. http:

//www.ohloh.net/p/WebKit, Apr. 2014.

[12] Chernoff, A., Herdeg, M., Hookway, R., Reeve, C., Rubin, N., Tye, T., Ya-

davalli, S. B., and Yates, J. FX!32: A Profile-Directed Binary Translator. IEEE
Micro 18, 2 (Mar. 1998), 56–64.

[13] Dall, C., Li, S.-W., Lim, J. T., Nieh, J., and Koloventzos, G. ARM Virtualization:

Performance and Architectural Implications. In Proceedings of the 43rd Interna-
tional Symposium on Computer Architecture (June 2016), ISCA 2016, pp. 304–316.

[14] Dall, C., and Nieh, J. KVM/ARM: The Design and Implementation of the

Linux ARM Hypervisor. In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems (Mar.

2014), ASPLOS 2014, pp. 333–348.

[15] Dolezel, L. The Darling Project. http://darling.dolezel.info/en/Darling, Aug.

2012.

[16] Dowty, M., and Sugerman, J. GPU Virtualization on VMware’s Hosted I/O

Architecture. ACM SIGOPS Operating Systems Review 43 (July 2009), 73–82.

[17] Dreyfus, E. Linux Compatibility on BSD for the PPC Platform. http://onlamp.

com/lpt/a/833, May 2001.

[18] Dreyfus, E. IRIX Binary Compatibility, Parts 1–6. http://onlamp.com/lpt/a/2623,

Aug. 2002.

[19] Dreyfus, E. Mac OS X Binary Compatibility on NetBSD: Challenges and Imple-

mentation. In Proceedings of the 2004 EuroBSDCon (Oct. 2004).

[20] Filip Pizlo. Surfin’ Safari - Blog Archive - Introducing the WebKit FTL JIT.

https://www.webkit.org/blog/3362/introducing-the-webkit-ftl-jit/, May 2014.

[21] FreeBSD Documentation Project. Linux Binary Compatibility. In FreeBSD
Handbook, B. N. Handy, R. Murphey, and J. Mock, Eds. 2000, ch. 11.

[22] Gamme, E., Johnson, R., Helm, R., and John, V. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Oct. 1994.

[23] Geoff Stahl. GL_APPLE_fence. https://www.opengl.org/registry/specs/APPLE/

fence.txt, Aug. 2002.

[24] Hohensee, P., Myszewski, M., and Reese, D. Wabi CPU Emulation. In Proceed-
ings of the 8th Symposium on High Performance Chips (Aug. 1996), Hot Chips
1996, pp. 47–65.

[25] Hunt, G. C., and Brubacher, D. Detours: Binary Interception of Win32 Func-

tions. In Proceedings of the 3rd USENIX Windows NT Symposium (July 1999),

WINSYM 1999.

[26] John Rosasco and Andrew Barnes. GL_APPLE_row_bytes. http://www.

opengl.org/registry/specs/APPLE/row_bytes.txt, Oct. 2006.

[27] John Spitzer and Mark Kilgard and Acorn Pooley. GL_NV_fence. https:

//www.khronos.org/registry/gles/extensions/NV/fence.txt, Dec. 2008.

[28] Khronos Group. OpenGL Extensions – OpenGL.org. http://www.opengl.org/

wiki/OpenGL_Extensions.

[29] Khronos Group. OpenGL ES Common Profile Specification Version 2.0.25 (Full

Specification). http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.

25.pdf, Nov. 2010.

[30] Khronos Group. Khronos Native Platform Graphics Interface (EGL Version 1.4).

http://www.khronos.org/registry/egl/specs/eglspec.1.4.20130211.pdf, Feb. 2013.

[31] Khronos Group. OpenGL ES – The Standard for Embedded Accelerated 3D

Graphics. http://www.khronos.org/opengles/, Jan. 2013.

[32] Laadan, O., and Nieh, J. Operating System Virtualization: Practice and Experi-

ence. In Proceedings of the 3rd Annual Haifa Experimental Systems Conference
(May 2010), SYSTOR 2010, pp. 17:1–17:12.

[33] Lagar-Cavilla, H. A., Tolia, N., Satyanarayanan, M., and de Lara, E. VMM-

independent Graphics Acceleration. In Proceedings of the 3rd International Con-
ference on Virtual Execution Environments (June 2007), VEE 2007, pp. 33–43.

[34] Linux Containers. Linux Containers - LXC - Introduction, Sept. 2017. https:

//linuxcontainers.org/lxc/introduction/.

[35] Nieuwejaar, N., Schrock, E., Kucharski, W., Blaine, R., Pilatowicz, E., and

Leventhal, A. Method for Defining Non-Native Operating Environments. US

7689566, Filed Dec. 12, 2006, Issued Mar. 30, 2010. http://www.patentlens.net/

patentlens/patent/US_7689566/.

[36] NVIDIA Corporation. High Performance Computing (HPC) and Su-

percomputing | NVIDIA Tesla | NVIDIA. http://www.nvidia.com/object/

tesla-supercomputing-solutions.html, Apr. 2014.

[37] NVIDIA Corporation. Shared Virtual GPU (vGPU) Technology | NVIDIA.

http://www.nvidia.com/object/virtual-gpus.html, Apr. 2014.

[38] OpenVZ. http://openvz.org/Main_Page.

[39] Oracle Corporation. Consolidating Applications with Oracle Solaris Contain-

ers. http://www.oracle.com/technetwork/server-storage/solaris/documentation/

consolidating-apps-163572.pdf, July 2011.

[40] Osman, S., Subhraveti, D., Su, G., and Nieh, J. The Design and Implementation

of Zap: A System for Migrating Computing Environments. In Proceedings of
the 5th Symposium on Operating Systems Design and Implementation (Dec. 2002),

OSDI 2002, pp. 361–376.

[41] PassMark Software, Inc. PerformanceTest Mobile on the App Store. https://

itunes.apple.com/us/app/performancetest-mobile/id494438360?ls=1&mt=8, June

2012.

[42] PassMark Software, Inc. PassMark PerformanceTest – Android Apps on

Google Play. https://play.google.com/store/apps/details?id=com.passmark.pt_

mobile, Jan. 2013.

[43] Porter, D. E., Boyd-Wickizer, S., Howell, J., Olinsky, R., and Hunt, G. C.

Rethinking the Library OS from the Top Down. In Proceedings of the 16th
International Conference on Architectural Support for Programming Languages
and Operating Systems (Mar. 2011), ASPLOS 2011, pp. 291–304.

[44] Potter, S., and Nieh, J. Apiary: Easy-to-Use Desktop Application Fault Con-

tainment on Commodity Operating Systems. In Proceedings of the 2010 USENIX
Annual Technical Conference (June 2010), USENIX ATC 2010, pp. 103–116.

[45] Stegmaier, S., Magallón, M., and Ertl, T. A Generic Solution for Hardware-

Accelerated Remote Visualization. In Proceedings of the Symposium on Data
Visualisation (2002), VISSYM 2002, pp. 87–94.

[46] Sugerman, J., Venkitachalam, G., and Lim, B.-H. Virtualizing I/O Devices

on VMware Workstation’s Hosted Virtual Machine Monitor. In Proceedings of
the 2001 USENIX Annual Technical Conference (June 2001), USENIX ATC 2001,

pp. 1–14.

[47] The Android OpenSource Project. Graphics | Android Developers. https:

//source.android.com/devices/graphics.html, Jan. 2013.

[48] The Android OpenSource Project. Dashboards | Android Developers. http:

//developer.android.com/about/dashboards/index.html, Apr. 2014.

[49] The VirtualGL Project. VirtualGL | Main / The VirtualGL Project. http:

//www.virtualgl.org/, May 2014.

[50] Tian, K. Graphics Virtualization (XenGT) | 01.org. https://01.org/xen/blogs/

srclarkx/2013/graphics-virtualization-xengt, Apr. 2014.

[51] Web Standards Project. The Acid3 Test. http://www.acidtests.org/, Mar. 2008.

[52] WebKit Community. Bug 24986 – [multi-patch] ARM JIT port. https://bugs.

webkit.org/show_bug.cgi?id=24986, June 2009.

[53] X.Org Foundation. GLX. http://dri.freedesktop.org/wiki/GLX/, Apr. 2013.

67

http://www.alexa.com/topsites/countries/US
http://www.alexa.com/topsites/countries/US
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
https://developer.apple.com/library/ios/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/OpenGLESPlatforms/OpenGLESPlatforms.html#//apple_ref/doc/uid/TP40013599-CH106-SW1
https://developer.apple.com/library/ios/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/OpenGLESPlatforms/OpenGLESPlatforms.html#//apple_ref/doc/uid/TP40013599-CH106-SW1
https://developer.apple.com/library/ios/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/OpenGLESPlatforms/OpenGLESPlatforms.html#//apple_ref/doc/uid/TP40013599-CH106-SW1
http://www.webkit.org/
http://www.ohloh.net/p/WebKit
http://www.ohloh.net/p/WebKit
http://darling.dolezel.info/en/Darling
http://onlamp.com/lpt/a/833
http://onlamp.com/lpt/a/833
http://onlamp.com/lpt/a/2623
https://www.webkit.org/blog/3362/introducing-the-webkit-ftl-jit/
https://www.opengl.org/registry/specs/APPLE/fence.txt
https://www.opengl.org/registry/specs/APPLE/fence.txt
http://www.opengl.org/registry/specs/APPLE/row_bytes.txt
http://www.opengl.org/registry/specs/APPLE/row_bytes.txt
https://www.khronos.org/registry/gles/extensions/NV/fence.txt
https://www.khronos.org/registry/gles/extensions/NV/fence.txt
http://www.opengl.org/wiki/OpenGL_Extensions
http://www.opengl.org/wiki/OpenGL_Extensions
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/egl/specs/eglspec.1.4.20130211.pdf
http://www.khronos.org/opengles/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
http://www.patentlens.net/patentlens/patent/US_7689566/
http://www.patentlens.net/patentlens/patent/US_7689566/
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/virtual-gpus.html
http://openvz.org/Main_Page
http://www.oracle.com/technetwork/server-storage/solaris/documentation/consolidating-apps-163572.pdf
http://www.oracle.com/technetwork/server-storage/solaris/documentation/consolidating-apps-163572.pdf
https://itunes.apple.com/us/app/performancetest-mobile/id494438360?ls=1&mt=8
https://itunes.apple.com/us/app/performancetest-mobile/id494438360?ls=1&mt=8
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile
https://source.android.com/devices/graphics.html
https://source.android.com/devices/graphics.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://www.virtualgl.org/
http://www.virtualgl.org/
https://01.org/xen/blogs/srclarkx/2013/graphics-virtualization-xengt
https://01.org/xen/blogs/srclarkx/2013/graphics-virtualization-xengt
http://www.acidtests.org/
https://bugs.webkit.org/show_bug.cgi?id=24986
https://bugs.webkit.org/show_bug.cgi?id=24986
http://dri.freedesktop.org/wiki/GLX/

	Abstract
	1 Introduction
	2 iOS and Android Graphics Overview
	3 Cycada Graphics Architecture
	4 GLES
	4.1 Diplomat Usage Patterns

	5 EAGL
	6 Memory Management
	6.1 IOSurface Life Cycle Management
	6.2 Cross-API Object Sharing

	7 Multi-Threaded GLES
	7.1 Thread Impersonation

	8 EAGL Multi-Context Support
	8.1 Dynamic Library Replication
	8.2 Unintended Consequences

	9 Evaluation
	10 Related Work
	11 Conclusions
	12 Acknowledgments
	References

