
Tap: An App Framework for
Dynamically ComposableMobile Systems
Naser AlDuaij

Department of Computer Science
Columbia University

New York, New York, USA
alduaij@cs.columbia.edu

Jason Nieh
Department of Computer Science

Columbia University
New York, New York, USA
nieh@cs.columbia.edu

ABSTRACT
As smartphones and tablets have become ubiquitous, there is a grow-
ing demand for apps that can enable users to collaboratively use
multiple mobile systems.We present Tap, a framework that makes it
easy for users to dynamically compose collections of mobile systems
and developers to write apps that make use of those impromptu
collections. Tap users control the composition by simply tapping
systems together for discovery and authentication. The physical in-
teraction mimics and supports ephemeral user interactions without
the need for tediously exchanging user contact information such
as phone numbers or email addresses. Tapping triggers a simple
NFC-based mechanism to exchange connectivity information and
security credentials that works across heterogeneous networks and
requires no user accounts or cloud infrastructure support. Tapmakes
it possible for apps to use existing mobile platform APIs across mul-
tiple mobile systems by virtualizing data sources so that local and
remote data sources can be combined together upon tapping. Virtu-
alized data sources can be hardware or software features, including
media, clipboard, calendar events, and devices such as cameras and
microphones. Leveraging existing mobile platform APIs makes it
easy for developers to write apps that use hardware and software
features across dynamically composed collections ofmobile systems.
We have implemented a Tap prototype that allows apps to make use
of both unmodified Android and iOS systems.We havemodified and
implemented various apps using Tap to demonstrate that it is easy
to use and can enable apps to provide powerful new functionality by
leveraging multiple mobile systems. Our results show that Tap has
good performance, even for high-bandwidth features, and is user
and developer friendly.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile de-
vices; Ubiquitous and mobile computing systems and tools;
Ubiquitousandmobilecomputingdesignandevaluationmeth-
ods; • Software and its engineering→ Software libraries and
repositories;Developmentframeworksandenvironments;Mid-
dleware;Operating systems; Peer-to-peer architectures;API

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8443-8/21/06. . . $15.00
https://doi.org/10.1145/3458864.3467678

languages; • Computer systems organization→ Client-server
architectures; Peer-to-peer architectures; • Networks→Mobile ad
hoc networks.

KEYWORDS
Mobile computing; distributed computing; operating systems; mo-
bile devices; remote display; Android; iOS
ACMReference Format:
Naser AlDuaij and Jason Nieh. 2021. Tap: An App Framework for Dynam-
ically Composable Mobile Systems. In The 19th Annual International Con-
ference on Mobile Systems, Applications, and Services (MobiSys ’21), June
24–July 2, 2021, Virtual, WI, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3458864.3467678

1 INTRODUCTION
With mobile systems evermore ubiquitous, users rely on them as
essential accessories of modern day life to socialize, share, and inter-
act with other people. Individual users often ownmultiple mobile
systems [84] and groups of users have many mobile systems at their
disposal. There is a growing demand to provide users with a seam-
less experience across multiple mobile systems, not just use them
as separate, individual systems. Our work onM2 [1] demonstrates
various examples of useful functionality that can be achieved with
multiple mobile systems working together, including combining
multiple mobile systems into a mobile multi-headed display surface
to provide a big screen experience for all users and turning a pair of
mobile systems into a portable motion-based gaming console. We
refer to the ability to combine the functionality of multiple mobile
systems asmulti-mobile computing.

Althoughmulti-mobile computing has the potential to provide
a wide range of powerful new app functionality, there are two key
challenges that stand in the way of further adoption. First, there is
no general, easy-to-use mechanism to connect impromptu collec-
tions of mobile systems that works across heterogeneous systems
and networks. Even basic information sharing across mobile sys-
tems often requires users to tediously exchange phone numbers or
email addresses, a burdensome process especially for the types of
ephemeral interactions that occur among mobile users, not to men-
tion that users may not want to reveal such personal information.
Some approaches require users to login to cloud infrastructure and
connect those cloud accounts together, an inconvenient process at
best that requires network infrastructure and fails otherwise [41, 45].
Other approaches such as Apple’s AirDrop [8] remove some of this
burden to enable media sharing across mobile systems, but do not
generalize to allow apps to go beyond this limited functionality to
perform a wider range of tasks.

https://doi.org/10.1145/3458864.3467678
https://doi.org/10.1145/3458864.3467678

Second, there is a lack of support for app developers who want
to create multi-mobile apps that operate across multiple mobile sys-
tems. This forces each app developer who wants to provide such
functionality to start from scratch, incurring the same recurring de-
velopment costs and making development difficult and error prone
at best. Each developer may come up with ad hoc approaches and
conflicting user interfaces, resulting in unexpected app interactions
and an inferior user experience. A key challenge is how to provide
a general way for apps to programmatically connect hardware and
software features across impromptu collections of mobile systems.

To address these problems to enable multi-mobile computing for
the masses, we introduce Tap. Tap is an app framework that enables
users tomake use of impromptu and dynamically composable collec-
tions of mobile systems, and enables app developers to create apps
that can take advantage of these collections. Tap introduces two
key ideas. First, Tap provides a novel connectivity mechanism that
combines tapping and NFC to enable connectivity across multiple
different available communication mediums, even in the absence of
Internet access. Second, Tap introduces data source virtualization
which allows apps to access multiple remote software and hard-
ware features across heterogeneous platforms via existing, familiar
platform APIs.

Tap makes it easy to connect mobile systems together by lever-
aging a familiar user interaction paradigm, tapping a mobile system,
which is increasingly used for mobile payments and public trans-
portation [26, 42, 47]. Tap repurposes it to control a novelmechanism
to enable connectivity across multiple heterogeneous systems oper-
ating across heterogeneous networks. Users simply tap their mobile
systems together to allow them to be used in combination with one
another. Tap leverages widely available NFC technology deployed
on mobile systems to detect proximity of mobile systems as a result
of a tap and then exchange connectivity information and security
credentials. Unlike other approaches such as Bump [17], Tap is an
entirely localized mechanism, making it possible to establish net-
work connectivity across systemswithout any need to sign into user
accounts or rely on cloud infrastructure or certificate authorities.
The NFC information exchange includes local IP addresses which
are then used to establish a high-bandwidth IP-based connection
between systems viaWiFi, cellular, or WiFi Direct [81] in a manner
that works robustly for systems on completely different networks
and in the presence of NATs and firewalls. Using Tap, mobile sys-
tems automatically connect after a tap and can then be used by apps
collectively as though theywere one, enabling quick and easy-to-use
ephemeral interactions among users and their mobile systems.

Tap makes it easy to create multi-mobile apps by leveraging and
repurposing existing mobile APIs already familiar to app developers
such that the same APIs can be used across multiple mobile systems.
This is made possible by introducing a novel idea, data source vir-
tualization. We observe that existing mobile APIs provide ways to
specify data sources to be used with the API. For example, using the
camera API, there is a source identifier to specify whether it is the
front or back camera that is requested. Tap introduces data source
virtualization so that remote features on other mobile systems can
be referenced locally via virtual data sources. Virtual data sources
can be used in the same manner as any other data sources, making
it possible to reuse existing APIs with remote features. Data source

virtualization is accomplished using a data-centric approach to im-
port and export the data associated with hardware and software
features, avoiding the need to bridge API differences across hetero-
geneous systems. For example, a developer writing an Android app
only needs to knowaboutAndroidAPIs but can still access hardware
and software features on remote iOS systems. This is made possi-
ble because the data associated with features can be represented in
standard formats portable across different systems.

Unlike prior systems and platform approaches, Tap is designed
to support multi-mobile apps on stock mobile platforms without
requiring any modifications. All necessary functionality can be en-
capsulated in a cross-platform framework that app developers can
use in creating multi-mobile apps; the mobile apps can then simply
be downloaded from the respective app store. This makes it easy to
deploy multi-mobile apps as getting a multi-mobile app is no differ-
ent than downloading any other app from the respective app store.
In the same manner, Tap is designed to work across heterogeneous
collections of mobile systems with different hardware and software
versions based on the same principles that provide portability for
existing non-multi-mobile apps.

We have implemented a Tap prototype for Android and iOS that
allows apps to make use of multiple mobile systems with different
hardware and software versions. Our experimental results show that
Tap is easy to use and provides fast connectivity and performance
among systems across heterogeneous networks. Writing a Tap app
is similar to writing any other mobile app and only requires a one
line import of the Tap framework. We have used Tap to build and
install several multi-mobile apps, including a popular sword fighting
game that can leverage multiple mobile systems to control the game
via realistic sword movements instead of unintuitive touchscreen
gestures, a music player that can leverage the audio output of mul-
tiple mobile systems to provide higher fidelity surround sound, a
multi-channel audio recorder that leverages microphones across
multiple mobile systems to provide higher-fidelity audio recording,
a new group snap feature for Snapchat users across multiple mo-
bile systems, and a cross-platform photo gallery app that makes it
trivial to share photos among authenticated mobile systems with
a simple select, tap, and swipe gesture. These various apps show
that connecting mobile systems is easy for users to do, and building
apps that leverage the Tap framework is straightforward and can
provide powerful newmulti-mobile computing functionality across
unmodified Android and iOS systems.

2 USAGEMODEL
Tap is easy to use. Users simply download and install Tap-enabled
apps from the respective app store and run them. The respective app
is run on each mobile system that users would like to have interact
using Tap. Figure 1 shows how to use a Tap app. A Tap app will
have one or more app-defined tasks that are enabled by tapping
systems together. Each task can involve sharing hardware and soft-
ware features across systems.When the systems are tapped together
and therefore connected, a notification is typically displayed to the
user to indicate what systems are connected and what task is being
performed. When the task completes, the systems are automatically
disconnected. Note that Tap also supports contactless interactions
and works when systems are just a few centimeters apart, for users

Tap systems together; connect Tap app performs task Task completes; disconnectSelect task in Tap app

Select
task

Task host

Tap!

Tap!

Task guests

Performing
task…

Figure 1: How to use a Tap app

whomaywant to avoid physically touchingmobile systems together
due to COVID-19 [19, 73, 78]. It also enables users to share features
rather than physically sharing a systemwith other users.

Using photo sharing as a simple example, suppose user A wants
to share a photo with user B. For simplicity, let’s assume both users
are using Android smartphones, which have the Android Gallery
app for browsing photos. The Gallery app has a Share button that
brings down a drop down list for ways to share photos. Both users
would run the Gallery app on their systems. Assuming the Gallery
app has been enabled to use Tap, user A would select a photo and
click the Share button, then select the option to share via Tap. Users
A and B would then tap their systems together, causing the photo
to be shared from user A’s Gallery app to user B’s Gallery app. Note
that there is no need for the app to show a user a list of systems or for
the user to manually select from a list of systems; physically tapping
systems together automatically connects them. Once the photo has
been delivered to user B’s smartphone, the systems are automatically
disconnected. Although we use photo sharing as a simple example,
Tap can be used to allow an app on one system to access awide range
of remote hardware and software features on other systems, such
as clipboard, camera, microphone, display, and sensors.

With Tap, an app-defined task is the granularity at which systems
are connected. A task can be long or short, though we expect most
tasks to be short in practice. While alternative design choices could
be made, such as having systems be connected until users explicitly
disconnect, we wanted to avoid complicating the usage model by
focusing users on the task they want to accomplish as opposed to
keeping trackof connectivity and requiringusers to explicitly discon-
nect. We also wanted to enable developers to select the appropriate
granularity best suited to the respective app and its functionality.
A potential downside of this approach is that for some apps, there
may bemultiple tasks, each of which would require tapping systems
together to accomplish the task. However, we believe that app devel-
opers who retain control over what constitutes a task are best suited
to defining the appropriate granularity that makes the most sense
for their respective apps, and Tap’s goal is to empower those app
developers. Furthermore, it is important to note that a task need not
correspond to a single hardware or software feature. For example, for
the Gallery app photo sharing example, a user could select multiple
photos to share on a tap, not just one.

Tap allows multiple mobile systems to be involved in an app-
defined task by tapping them together.We refer to the set of systems
that have been tapped together to perform an app-defined task as

a collection. Tap enables chaining, which allows any system in the
collection to tap with another mobile system to include that system
in the collection as well.

Tap apps are regular mobile apps and must obey all the same
user and security permission settings already available on mobile
platforms such as Android. For simplicity, Tap does not currently
override any existing permissions.Anypermissions granted for local
features are granted similarly for remote features. For example, if a
user denies a Tap app permission to access the local camera, the Tap
appwill not be able to share the local camera since these permissions
are controlled by the platform. However, this does not prohibit the
Tap app from accessing a remote camera as long as the app is permit-
ted to access the network and the app located on the remote system
has permission to access the camera on that system. Thismodel is no
different than non-Tap apps; once a user gives an app local access to
a feature, the user has no control over whether that feature is shared
remotely if network permissions have been granted. For example,
Zoom [85] allows a user to share their local camera by only allowing
local camera access to the app. Tap, therefore, does not increase secu-
rity risks beyondnon-Tapapps.Adopting amorefinegrainedpermis-
sion model would require platform changes so Tap adopts a simpler
permission model to work across unmodified mobile platforms.

3 DEVELOPERAPI
App developers make use of the Tap API to program tasks in apps to
make use of features across multiple mobile systems. The Tap API
is available as a downloadable SDK that developers can use in their
apps and release in the respective app store. The API is designed
to be similar to existing mobile platform APIs to make it easy for
developers to use. For simplicity, we describe the API as it would be
used by Android app developers; similar methods would be used by
iOS app developers.

The Tap API enables developers to define app-specific tasks to
express how hardware and software features are shared across a
collection of mobile systems. A task is a series of operations that
can make use of one or more features. Tap defines tasks in a master-
slave model in which one system, the task host, is responsible for
controlling and coordinating tasks while other systems that are part
of the collection, task guests, follow the direction of the task host.
Task hosts generally use remote features and task guests generally
provide those features for use. Task guests only connect directly to
the host, not directly to each other, as they aremerely participants in

Feature System service/level Abstraction Interface Number of streams Local Remote N==1 Error report LOC
Sensor SensorService Event type (int32) Callback 1 sensor event stream 0-26 27-53 No update 109
Input InputFlinger Source type (int32) Callback 1 input event stream 0-4 5-9 No update 125
Location LocationMgrSvc Provider name (string) Callback 1 location data stream "gps" "gps-TP1" No update 272
Microphone AudioFlinger Source type (int32) Method Per source 0-10 11-21 Return error 376
Camera CameraService Camera ID (int32) Method One camera at a time 0-1 2-3 Callback 1817
Audio AudioFlinger Implicit (int32) Method Mixes audio streams 0-3 4-7 Return error 147
Display SurfaceFlinger Surface name (string) Method Per surface App based Append "-TP1" Callback 2105
Clipboard ClipboardService Label/item (string) Method Systemwide buffer App based Append "-TP1" Exception 153
Notification NotificationMgrSvc Tag (string) Method App initiated App based Append "-TP1" Callback 239
Intent Activity/Context Data (URI string) Method App initiated App based Append "-TP1" Exception 312
Calendar ContentResolver ID (URI string) Method Systemwide database "calendar" "calendar-TP1" Return error 142
Contacts ContentResolver ID (URI string) Method Systemwide database "contacts" "contacts-TP1" Return error 421
Media ContentResolver ID (URI string) Method Systemwide database "media" "media-TP1" Return error 627

Table 1: Tap features on Android

the dynamic collection controlled by the host. An appmay designate
different task hosts for different tasks, but each task has only one task
host. The master-slave model simplifies the programming paradigm
for the developer by enabling centralized control and coordination
of a task instead of having to manage more complex distributed
control and coordination, especially given that tasks are typically
short-lived. The role of a host versus a guest does not define the data
flow or howmuch work the guest does compared to the host, only
that the host initiates the task and controls it, deciding what it does,
its duration, and how the guests participate.

To initialize an app to use Tap, Tap provides a simple API, set
SystemListener as shown in Listing 1, to register an app-defined
callback class and indicate whether it is a task host or a task guest:

boolean setSystemListener(TapSysListener listener,
boolean taskHost);

int getSource(System sys, String feature, int local);
String getSource(System sys, String feature, String local);

Listing 1: Tap API

Registering this class initializes the underlying Tap framework code,
which is executed in response to taps to establish a successful con-
nection. Only when Tap successfully connects two systems together,
the callback is called to inform the app of the availability of another
system in the collection. The callback provides a read-only Tap Sy
stem object that contains information about the connected system,
such as its unique ID, available features, and feature options.

Once systems are discovered and connected via Tap and the app
is informed via the callback method, features can be shared across
the connected collection of systems. Tap defines a feature as a set
of developer public APIs that provide access to software or hard-
ware user-facing data, such as device location, media, sensors, or
clipboard. These are high-level public developer APIs in Java for
Android and Objective-C or Swift for iOS. Tap focuses on making
features available across multiple systems that relate to receiving
and sending user-facing data. It does not provide multi-system func-
tionality for other generic app APIs, programming constructs, or
helper APIs such as the settings APIs. Tap does not share generic
system resources unrelated to user-facing data, such as CPU,WiFi,
or Bluetooth. Table 1 lists the features Tap supports in Android.

Leveraging existing APIs for accessing remote features allows
developers to avoid a steep learning curve and to easily convert apps

to Tap-aware apps. Using Tap, developers need to simply include
Tap package classes instead of Android or iOS classes or header files.
Tap introduces data source virtualization, described in Section 4, to
enable reusing existing APIs for remote features.

As shown in Listing 1, Tap provides an API, getSource, to return
virtualized data source identifiers that works for both string and
integer identifiers. It takes a System object referring to a remote
system, a feature name, and the equivalent local type, and returns
the virtualized remote type. Tap reuses existing methods for report-
ing errors with local data sources to report errors with remote data
sources as well. For example, if a remote system disconnects, its
respective feature would be unavailable and Tapwould simply reuse
Android’s existing and available error reporting functionalities for
the feature to inform the app of failures. Table 1 lists the data source
abstractions for various hardware and software features on Android.

To illustrate how the TapAPI works, we provide an example of an
app requesting remote sensor data. First, we show how local sensors
are accessed on Android:

int S1 = Sensor.TYPE_LINEAR_ACCELERATION; // Accelerometer
int d = SensorManager.SENSOR_DELAY_NORMAL;
SensorManager mSMgr = getSystemService(SENSOR_SERVICE);
mSMgr.registerListener(this, mSMgr.getDefaultSensor(S1), d);

Listing 2: Registering for local Android sensors

Listing 2 shows the sensor service is requested first and the sensor
source type, S1, is defined as the accelerometer. The app then reg-
isters its class, which is of type SensorEventListener, to receive
accelerometer sensor data at a normal rate. The app overrides the
onSensorChangedmethod, shown in Listing 3:

@Override // Override onSensorChanged with our own code
public void onSensorChanged(SensorEvent event) {

if (event.sensor.getType() == S1)
// accelerometer, data in event.values[]

}

Listing 3: Receiving sensor data

This callback method gets called by Android to provide the app with
sensor events. In this case, it will only provide the accelerometer
data. The sensor type can be accessed through the provided event
argument and is checked against the equivalent type. Using unreg

isterListener, the app can unregister from the sensor service to
stop receiving updates.

For an app touseTap to receive remote accelerometer data instead,
the code in Listing 2 is changed to:

// Listen on connectivity+update sys (a List of System objs)
Tap.setSystemListener(localListener, /*host*/true);
// After connecting to a remote system:
int S1 = getSource(sys.get(0), "Sensors",

Sensor.TYPE_LINEAR_ACCELERATION);
int d = SensorManager.SENSOR_DELAY_NORMAL;
SensorManager mSMgr = getSystemService(SENSOR_SERVICE);
mSMgr.registerListener(this, mSMgr.getDefaultSensor(S1), d);

Listing 4: Registering for remote sensors using Tap

Listing 4 shows the app registering for connectivityupdates andhost-
ing a task using the Tap API. The localListener is implemented
by the app for when systems connect, disconnect, or get updated.
The connected status is only reported to the app when a successful
tap occurs and the system is fully connected. A disconnected status
is reported to the app if the system is no longer connected. These are
reported via Tap app callbacks, allowing an app to receive updates
on what systems are available for use. Tap guests can now connect
to this system. These guests are tracked by an app-defined global
list variable, sys. Once the app discovers a connected system, it gets
the source type of the sensor by calling Tap’s getSourcemethod on
the remote System object. Thismethod retrieves the virtualized data
source identifier for the remote feature type. Similar to the local sen-
sors code, theapp then registers to listen for the remote systemsensor
updates. If getDefaultSensor is called before a Tap app registers a
listener, itwill simply return the samesensorusedby the local system.

The app then overrides the onSensorChangedmethod, resulting
in the same exact code as requesting the local sensor shown in List-
ing 3, with S1 referring to remote sensor data. The app can then use
the sensor data. The app can stop receiving remote sensor data by
using the same exact Android method to stop receiving sensor up-
dates from local sensors, unregisterListener. Alternatively, the
app can disconnect all systems and destroy the task by passing null
to the setSystemListenermethod. For guests trying to disconnect,
setting setSystemListener to nullwill suffice as well.

4 ARCHITECTURE
To support the Tap usage model and developer API without changes
to existing mobile platforms, Tap provides a novel system architec-
ture encapsulated in a set of libraries used by apps that includes
two key components, a connectivity mechanism to facilitate sharing
features and a data source virtualization mechanism to access and
utilize these shared features. Figure 2 shows an overview of the Tap
architecture on Android.

Connectivity Mechanism Tap provides a mechanism to con-
nect mobile systems together to share features and to meet several
key requirements. First, it must be easy-to-use. Second, it must be
quick to support common ephemeral user interactions among users
whomaynot knoweach other’s contact information. Third, it should
protect user privacy; users should not receive data they do not want
to receive, be discoverable when they do not want to be, or require

Hardware Abstraction Layer

Android
Runtime

Native
C/C++ Libs

Managers
(Notification,

Location,
Package, ͙)

Tap App

Kernel (Device Drivers͙)

App Code

Tap API

Native
Tap

Library

Java Framework API
Content

Providers

View System

System
Services

Remote
Tap

Apps

Tap API
Features

Data
Conversion

Data Source
Virtualization

Connectivity
NFC R/W WiFi Direct

Native Tap Library

Task
Mgt

System Obj.
Mgt

Notification
Mgt

Tasks

Connectivity
Net: RX/TX mDNS

Feature Data
Crypto Codec

Figure 2: Tap architecture; Tap components in solid grey

their data to go through third-party cloud infrastructure to be poten-
tially collected. Fourth, it must work across multiple heterogeneous
systems connected across heterogeneous networks, even with fire-
walls andNATs. Fifth, it shouldwork evenwhen there is limited or no
network infrastructure. Finally, it should provide a secure and high-
performance network communication path to support accessing
bandwidth-intensive data sources.

Various approaches exist that address some but not all of these
requirements. For example, Bump [17] provided an app to share
contacts and files by bumping systems together, but required use of
and routed user data through cloud infrastructure to work, risking
user privacy. Bump was eventually acquired by Google. Google’s
Android Beam [33] leveraged Bump’s bumpingmechanism together
with NFC for discovery, but suffered from poor performance due to
being limited to using Bluetooth for data communications. Bump
and Beam could only be used to connect two systems together at a
time. Apple’s AirDrop uses Bluetooth andWiFi Direct to provide a
localized high bandwidth connection, but is known to suffer from
usability issues [23, 46, 63, 75]. It either requires users to sift through
preexisting contacts or set up new ones to work, a burdensome pro-
cess for ephemeral user interactions, or allow anyone within a large
radius to send them potentially undesirable content, violating user
privacy. All of these approaches are limited to simple contact or file
sharing; none of them provide a general mechanism for apps to use
for data communications across mobile systems.

To meet all of the connectivity requirements, Tap leverages an
NFC-based mechanism triggered by tapping systems together, but
uses it to connect systems via an IP-based data communication
mechanism that takes advantage of the multi-network capabilities
of mobile systems. NFC is used to exchange local IP addresses which
are then used to establish a high-bandwidth IP-based connection
between systems viaWiFi, cellular, or WiFi Direct in a manner that
works robustly for systems on completely different networks and
in the presence of NATs and firewalls. The simple tapping inter-
action is quick and easy-to-use, and protects user privacy by only
allowing discovery for systems tapped together and avoiding the
need to exchange phone numbers, email addresses, or transmit user

Af
te

r
co

nn
ec

t
Af

te
r

ta
p

Infrast.WiFi

Task GuestTask Host
Initialize WiFi
Direct & Write

Tap data to NFC

Listen on
tap events

Read NFC (Tap data)

Cellular WiFi DirectListen on
connections

Be
fo

re
ta

p
(T

ap
 in

it.
)

Tap detected

On successful
decrypt, send
accept then
inform app Receive accept then inform app

Tap detected
Time

Time

Encrypt and send data using provided key

Process Tap data

Figure 3: Tap host/guest tap and connectivity flow

data through the cloud. The IP-based communication mechanism
provides a high-bandwidth communication path that works across
heterogeneous systems and networks, even in the absence of net-
work infrastructure by falling back toWiFi Direct availability. This
combination of NFC with IP-based technologies provides a signif-
icant advantage over existing solutions to provide a cross-platform,
robust, and user-friendlyway to connect systems for feature sharing
even in the absence of network infrastructure.

Figure 3 and Listing 5 show howTap combines NFC for discovery,
authentication, and security, and traditional IP wireless networking
for data communication. Each system sends via NFC its infrastruc-
ture WiFi IP address, cellular IP address, its public key for a self-
generated key pair, and app ID. The task host also sends temporary
and randomized potential WiFi Direct network credentials, namely
an SSID/password pair. The systems then use that information to
connect via IP networking for data communication through all three
potential network paths concurrently, accepting the highest priority
successful connection and saving the host provided symmetric key
for potentially encrypted feature data. The default priority ordering
used mirrors how smartphones use network infrastructure today,
providing a familiar user experience and taking advantage of what
is usually the fastest and most available medium on mobile systems.
InfrastructureWiFi is prioritized first, cellular is second, andWiFi
Direct is last, the latter typically taking the longest to establish con-
nectivityandhaving themost limited range.Lowerprioritynetworks
will connect if timeouts are exceeded for higher priority network
connections, currently 300 ms for infrastructure WiFi, and an ad-
ditional 300 ms for cellular to provide reasonable responsiveness
with sufficient time to allow for connections for eachmedium. Quick
connectivity is important, hence the focus on faster connectivity
methods such as infrastructure WiFi and cellular instead of WiFi
Direct, since many Tap tasks are ephemeral. Tap provides a modular
design for connectivity, so that other mediums such as Bluetooth
can be added, mediums can be prioritized differently, and future
technologies can be incorporated into Tap.

Once a connection is established and verified with the guest, the
task host shares its self-generated symmetric key with the guest by
encrypting it using the guest public key. This shared symmetric key
is used for encrypting feature data only once for all guests in the
task. If a guest is removed from a task session, the host generates

a new symmetric key that is only sent to the remaining guests, en-
crypted using their public keys. If the connection later fails, Tap will
actively try all mediums once again. If it still fails, the tap is deemed
a failure and the Tap apps are informed. Since a task host binds to
different network mediums, additional guests can connect through
different mediums on the same active task. This is possible since Tap
apps are decoupled from networking. No other existing approach
provides this combination of multiple mediums, medium offloading,
and secure security credential exchange.

Tapallowschainingwhereoneguest tapswitha taskguest already
connected to a task host to join that task. Once guests connect to the
host, they switch to an advertising mode similar to the host to allow
guests to connect to the main task host via chaining. Since the task
guest already has theNFC data from the host, it exchanges it via NFC
with the new guest and relays the public key and connectivity infor-
mation of the new guest to the host through its IP connection. The
newguest is thenable touse the same taskhostmechanismdescribed.

// TAP TASK GUEST:
main thread at t=0ms:
spawn medium threads:
infrastructure WiFi, cellular, WiFi Direct

wait on medium threads or t>5s
if t>5s then
end all medium threads, notify user and return fail

else if signaled with a connected medium then
notify user and return success

infrastructure WiFi thread:
if connected, then goto guest check

cellular thread:
if connected, wait until t=300ms then goto guest check

WiFi Direct thread:
if connected, wait until t=600ms then goto guest check

guest check:
1. end all other medium threads and their connections
2. encrypt session communication via NFC exchanged keys
3. send encrypted data to host
4. wait on symmetric key (decrypt with guest private key)
5. signal main thread

// TAP TASK HOST:
main thread at t=0ms:
spawn medium threads:
infrastructure WiFi, cellular, WiFi Direct

wait on medium threads or t>5s
if t>5s || signaled with no connection then
end all medium threads, notify user, and return fail

else if signaled with a connected medium then
notify user and return success

infrastructure WiFi, cellular, WiFi Direct threads:
listen on connection and if connected then goto host check

host check:
1. wait to receive encrypted data from guest
2. decrypt+verify data, otherwise signal main thread
3. send symmetric key (encrypted with guest public key)
4. end all other medium threads and their connections
5. signal main thread

Listing 5: Tap connectivity

Limitations arise with network address translation (NAT) across
different networks. In these cases, a Tap system may fail to reach
another Tap system. If one system is behind a NAT and the other is
not, the two systemswill not be able to connect using the exchanged
IP addresses. This issue is mitigated though in practice for several
reasons. First, Tap is being used to connect physically local systems,
so it is commonly the case that both systems may be on the same in-
frastructureWiFi network if such a network is available. In that case,
both systems are likely to be on the same subnet, NAT or no NAT,
and the local IP addresses will likely enable a successful connection.
Second, the vastmajority of cellular networks in developed countries
use non-NATed IPv6 [40], which will facilitate a connection using
the exchanged IP addresses. Finally, locally providedWiFi Direct is
always a fallback in case other mediums fail. A simple connectivity
test is used to check if the network is reachable followed by heart-
beats to ensure that the systems are still connected. Tap does not
resend data on a reconnection.

Data Source VirtualizationMechanism Tap’s goal is to allow
remote features to be used the same way as local features without
API or system changes. This provides two advantages: First, app
developers can reuse the same existing APIs to access both local and
remote features, minimizing development effort and cost. Second,
encapsulating Tapwithin apps allows for easier deployment for both
app developers and users.

To accomplish this goal, Tap introduces a new idea, data source
virtualization. We observe that many features provide the ability to
select the data source for the feature. For example, the camera feature
provides a way to select the back camera or the front camera as the
data source for the object representing a camera. Each data source
has an associated identifier, typically either an integer or a string
representing a name. For example, given a system with back and
front cameras, the camera feature data source identifiers are 0 and
1, respectively. Although any valid integer can be an identifier, each
feature makes use of only a limited range of identifiers; for example,
the camera feature only needs as many integers as there are cameras
available. Tap leverages this observation by segmenting the data
source identifier namespace for the respective feature and mapping
remote features to separate segmented portions of the namespace
that are unused, effectively providing virtual identifiers for remote
features. Remote features can then be referenced using these virtual
identifiers in the same way as local features, the only difference
being that the virtual identifiers map to a different range of the data
source namespace. Continuing with the camera example, if a remote
system has back and front cameras identified on the remote system
using respective identifiers 0 and 1, the remote cameras can now be
referenced on the local system in an independent virtual namespace
with the unused integer range 2 to 3. Because these ranges and
naming are small and limited, Tap can create segments of data source
ranges for a large number of remote systems. Tap effectively expands
data source namespaces into a set of independent virtual namespaces
that can be accessed as seamlessly as the original local namespaces.

To expand the local data source namespace to include sets of in-
dependent virtual namespaces for each feature, Tap overrides and
intercepts feature related API calls and examines the respective data
source. If thedata source identifier refers toa localnamespace, suchas
0 or 1 for cameras, it is sent to the local framework as usual. If the data

source refers to a remote namespace, such as 2 or 3 for a remote sys-
tem’s cameras, Tap initiates communication with the remote system
to access the remote feature. If the app then starts the camerapreview
or takes a picture, the Tap library redirects these requests to retrieve
remote data and feed it to the Tap app. Note that the Tap app uses the
same exact API for both local and remote cameras, but in the case of
the latter, it passes in a data source identifier associatedwith a remote
virtual namespace when initializing the camera object. Only a small
subsetof featureAPIsare intercepted tobeable to supportdata source
virtualization in Tap. Table 1 lists the namespace virtualization that
is done for various hardware and software features on Android.

Tap’s novel data source virtualization mechanismmust address
four key issues. First, there must not be any virtual namespace in-
consistencies or conflicts. Second, network intermittence or failures
must not cause apps to behave badly since features are generally
designed to run locally, not remotely. Third, features must be usable
across heterogeneous systems even though they may have different
APIs. Finally, users and their experience should not be adversely
affected using remote instead of local features, so performance is
crucial.

To provide naming consistency and avoid virtual namespace con-
flicts, Tap provides a unique system identifier for each connected
remote systemwhich it uses to determine the range for each virtual
namespace. For example, the data source for the local sensor feature
is an integer numbered 0 to 26 representing an event type. Tap uses
the remote system identifier to shift the range of the data source
identifiers for each remote system. Table 1 shows that for a remote
system with identifier N=1, its sensor data sources are numbered 27
to 53. If N=2 instead, sensor data sourceswould be numbered 54 to 80,
and so forth. Using getSourceAPI method discussed in Section 3,
apps can pass in the intended feature type for the equivalent local
data source along with the remote system identifier. The method re-
turns the data source for the specific feature on the specified remote
systemwhich can then be used with existing feature APIs. Note that
the conflict-free namespace ranges are tracked internally and not
exposed to developers; developers simply use the same feature APIs
for both local and remote features without needing to be aware of
the specific virtual namespace mappings.

To adapt to the dynamic nature of mobile systems and intermit-
tent connectivity, Tap reuses existing feature API options to report
failures. Existing feature APIs provide a way of informing apps of
any failures with data sources, as shown in Table 1. Tap observes
that errors are reported when local features are unavailable or in-
accessible through a specific return value or a callback. Tap utilizes
the same error reporting by applying and extending the reported
errors to also cover remote data source errors and disconnections.

To allow local feature APIs to be used even when remote sys-
tems use different APIs, we make two observations. First, mobile
systems are highly vertically integrated, and each system has its
own system-specific APIs. These APIs are often nonstandard and
incompatible with other systems making heterogeneity difficult to
support by forwarding or remotely calling these APIs, especially
in the context of lower-level hardware features. Second, although
mobile APIs are often system-specific, the higher-level semantics
of device data are well-known and device data may often have a
common format across different platforms, e.g., H.264 video data.
Leveraging these observations, Tapmakes no attempt tomatch APIs

across different systems, but instead imports and exports data to and
fromeachmobile systemusing commoncross-platformdata formats,
avoiding the need to bridge incompatible APIs. In other words, each
system converts its data sources into an intermediate cross-platform
format when exporting that data from one system to another, and
imports data from that intermediate format into its own APIs.

Tap intercepts the API methods used for accessing feature data
to control data flow, formats, and duration of sharing. There are
generally three main methods: a read method for some features to
read feature data from the system, a write method for some features
to write feature data to the system, and a callback interface for some
features to asynchronously provide apps with feature data. Tap
simply intercepts these three types ofmethods and converts the data
intoa common format inadata conversion layer, as shown inFigure2.

A potential disadvantage of interposing on the public developer
API layer is the complexity of theAPI. If theAPI is complex andmany
methods must be intercepted at which to import and export feature
data, and the volume of data that must be manipulated is high, the
result can be too complex and inefficient. Our experience with the
software and hardware features for mobile systems indicates that
these disadvantages do not exist for most software and hardware
features, except for OpenGL, as discussed in Section 5.

Because the feature data is in well-known common formats, Tap
can use hardware acceleration mechanisms available to apps to ma-
nipulate feature data to aid with importing and exporting feature
data in an efficient manner. For example, Tap uses real-time hard-
ware video and audio encoding to compress display and audio data
before transmitting it. Tap uses the commonly available H.264 video
encoding and AAC audio encoding for display and audio devices,
respectively, though other encoding formats can be used. These en-
coders can be dynamically configured to use different resolutions, bit
rates, and frame rates; Tap by default uses 30 frames per second (fps)
frame rates since they are visually indistinguishable from higher
frame rates for end users [72]. In the case of camera, Tap encodes the
camera preview data, which can be bandwidth-intensive if sending
raw frames, but does not encode the actual pictures taken, which are
transmittedmuch less frequently. This type of feature data approach
shows that the performance is indistinguishable even with respect
to high-bandwidth features such as display, camera, and audio [1].

For control messages and features which expect lossless data, Tap
uses TCP. For streamed features such as display, audio, and camera
preview, UDP is used. Data that is late or not delivered due to packet
loss is discarded. Timestamps are combined with NTP and best prac-
tices to ensuremedia synchronization across systems [51, 56, 64, 70].

5 IMPLEMENTATION
We implemented Tap for Android and iOS. The Tap API SDK was in
Java forAndroid andObjective-C for iOS, and also supported by a na-
tive Tap library in C. Table 1 lists the lines of code for each supported
feature across both the SDK and native library for Android; iOS de-
tails are omitted due to space constraints. Most of the native library
code consists ofnetworking, crypto, codec,mDNS, andconfiguration
code. The code for the library is in C and was easily portable.

TosupportNFC,TapusesHostCardEmulation[30]andReader [32]
modes on Android and the NFC ISO 7816 [7] implementation on iOS.
Android and iOS share data over NFC using theApplication Protocol

Data Unit (APDU). Currently, platforms require apps to be in the
foreground to receive NFC events. Unlike Android, the default be-
havior on iOS when registering for NFC events forces a user prompt.
Since task guests need to listen on NFC, we only register for NFC
on iOS when we detect a magnetometer sensor spike, indicating a
potential task host nearby. Immediately after the spike, Tap listens
on NFC events and the shown prompt is dismissed by Tap after the
data exchange, after a time out, or by the user.

To support feature sharing, Tap reuses the existing interfaces
provided by the mobile platform and interposes on some of these
existing APIs. Data sources of API calls are examined to route re-
quests and data from and to relevant systems. Android apps using
Java Native Interface (JNI) for features also include data sources that
can be virtualized. Tap adds a virtualized data source field for some
iOS feature APIswithout a data source argument. Figure 2 shows the
local and remote data flowbetween aTap app to a Tap library. Table 1
lists the interface for each feature. For callbacks, the local Tap library
requests the data; once received, it is unpacked, converted for the
local platform, and the app’s callback is fired by Tap with the data.
For writemethods, Tap forwards the data from the app to the remote
Tap library, where it converts it and applies it to its system. For read
methods, the Tap library requests the data from the remote system,
which gets forwarded in a common format to be received, converted,
and provided to the Tap app. Note that Tap adds an argument to the
input feature method for a data source and also revives a deprecated
setRoutingAPI for setting audio source. Android does not provide
error reporting for callbacks since the app never blocks. However,
disconnections are reported through Tap callback API instead.

Tosupport camerapreview, thepassedSurface, a graphical frame
buffer, is examined fora remote source. If found, it encodes the remote
camera preview and forwards the frames. The preview Surface is
provided to the decoder to receive, decode, and display the encoded
frames from the remote camera preview. Finally, to support display,
Tap reimplements the Android native C setNamemethod for Surf
ace and adds it to its Java equivalent class. Surface related APIs are
overloaded and examined for a remote source to forward the data.

Tapprovides support for remotingmost display relatedAPIs, such
as playing a video and recording a view. Tap apps may also locally
useOpenGL.However,without platformmodifications, Tapdoes not
support writing frames to remote displays using OpenGL [74] com-
mands. Previous approaches to remoting OpenGL have forwarded
OpenGLcommandsordata, bothofwhicharevery inefficientandnot
easily portable [3, 5]. By modifying the platform, Tap can solve this
problembychanging thedisplay systemservice,SurfaceFlinger in
Android, to record display surfaces and forward the encoded display
frames instead of OpenGL commands. This change is only required
in case a Tap developer wants to write frames using OpenGL to a re-
mote displaywith the TapAPI, and notwhenOpenGL is locally used.
If there is demand towrite frames remotely usingOpenGL,wewould
envision that mobile platforms could include this modification.

6 EVALUATION
To demonstrate the effectiveness of Tap, we measured its perfor-
mance, implemented newmulti-mobile apps and modified existing
apps to be multi-mobile aware using Tap, and conducted various
usability studies. We show Tap’s cross-platform functionality by

Network configuration (host/guest): P3a/P3a P3a/iPh
NATWiFi (same network) 14 11
Public WiFi (same network) 14 20
NATWiFi to public WiFi 19 12
NATWiFi to cellular 96 86
Cellular to public WiFi 45 49
Cellular (same carrier) 67 65
Cellular (different carriers) 96 99
WiFi Direct 2441 4155

Table 2: Tap connect times (ms); lower is better

conducting our experiments across a wide range of smartphones
and tablets running stock Android and iOS, including Pixel 3a (P3a)
smartphones running Android 9.0 Pie, Nexus 9 (N9) tablets running
Android Nougat 7.1.1, Nexus 7 Flo (N7) tablets running Android
Marshmallow 6.0.1, iPhone 11 Pro (iPh) running iOS 13.3.1, and
iPhone 6S (iPh6) running iOS 12.2. The N9, P3a, and iPh6 support
IEEE 802.11ac, the iPh supports IEEE 802.11ax, and the N7 uses IEEE
802.11n. Only the iPh and P3a have cellular (LTE) capability.

6.1 PerformanceMeasurements
ConnectivityMeasurementsWefirstmeasured how long it takes
from a tap to establishing a TCP connection to quantify how quickly
users can connect mobile systems together. We performed our ex-
periments across eight network configurations: (1) two systems
connected to anASUS RT-AC66UWiFi router with NAT (NATWiFi),
(2) two systems connected to a university campus publicWiFi net-
work (PublicWiFi), (3) one system behind the ASUS RT-AC66UWiFi
router with NAT connecting to another system on a university cam-
pus public WiFi network (NATWiFi to public WiFi), (4) one system
behind the ASUS RT-AC66UWiFi router with NAT connecting to
another system on T-Mobile cellular service (NATWiFi to cellular),
(5) one system onT-Mobile cellular service connected to another sys-
tem on a university campus public WiFi network (Cellular to public
WiFi), (6) two systems on T-Mobile cellular service (Cellular same
carrier), (7) one system on T-Mobile connected to another system
on Verizon cellular service (Cellular different carriers), and (8) two
systems connecting viaWiFi Direct hosted by one of the systems.

Table 2 shows the connect times for each of the eight network
configurations when using two Android systems and an Android
and iOS system; there was not much difference among different
pairs of Android systems, so we only show P3a results due to space
constraints. Each measurement was averaged over a hundred ex-
periments. InfrastructureWiFi generally connects the fastest at less
than 20ms, cellular takes longer but less than 100ms, andWiFi Direct
takes the longest at roughly 2.5 to 4s. These measurements show
the benefits of Tap’s multi-network approach to achieve connect
latencies for both infrastructureWiFi and cellular of less than 100ms,
a commonly used threshold belowwhich users view the response
time as negligible [72]. WiFi Direct provides an effective fallback
when network infrastructure is unavailable, but takes substantially
longer because it requires the guest to also connect to the host’s
newWiFi Direct network. Due to its proprietary implementation,
the iPh cannot host a cross-platform WiFi Direct network for an
Android guest, but it can connect to an Android host’s WiFi Direct

Method Touches Windows Time (s)
Tap 3 1 8.7
Android Beam 3 1 25.3
AirDrop 4 3 13.5
Text Msg 8 5 23.7
Email 9 3 27.6

Table 3: User-perceived latency for sharing an image

network, which was the measurement performed here. We also per-
formed a similar measurement using Apple AirDrop and Android
Beam, which had connect times between 3 to 3.5s, comparable to the
connect times forWiFi Direct when using Tap.

To provide a more complete measure of the time a user would
experience in practice when connecting two systems together, we
compared Tap against other approaches via a small IRB-approved
user study for performing a very simple task between two systems,
sharing an image from one system to another. Since the same task is
performed in all cases, the differences in latency for performing the
task can be loosely attributed to differences in establishing a connec-
tion among different approaches.We compared Tap against AirDrop
and Beam again, but also compared against two other common ap-
proaches, texting and also emailing the image using Gmail. As a con-
servativemeasure, we assumed that the sending user already had the
contact info for the recipient. We measured time using a stopwatch
and included all user interface actions in the time measured from se-
lecting the image in thephotogallery app for sending to receiving the
image in the photo gallery app on another system.We report average
measurements for three different users, each ofwhich performed the
experiment five times; a 3.4 MB image was used. All systems were
connected to a public university campusWiFi network. Because the
iOSandAndroidmeasurementswere similar,weonly reportAndroid
measurements using P3a systems except for AirDrop, which can
only be done using iPh systems. All reportedmeasurements used the
standard Android Gallery app, with Tap modifications as discussed
in Section 6.2, except AirDrop, which used the iOS Photos app.

Table 3 shows the latency measurements along with a count of
the number of screen touches required to perform the task and the
number of dialog windows used. Tap was the fastest in terms of
time and the number of user interface actions required. Tap was
2 to 3 times faster than all other Android methods and more than
1.5 times faster than AirDrop. Tap and Android Beam performed
similar user interface actions, but Beam suffers on performance due
to its use of Bluetooth for data communications. AirDrop is slower
than Tap both because of its much slower connect time via WiFi
Direct and the more limited bandwidth ofWiFi Direct compared to
taking advantage of available infrastructureWiFi. Text messaging
and email are much slower because they require many more user
interface actions to set up connectivity between systems. Texting
and email require sharing the image with text messaging or email
app, choosing a contact and/or a new or existing conversation, then
eventually hitting the send button. Even then, end-to-end connectiv-
ity is not complete as on the receiving side, the user must still touch
on the receiving side notification, touch on the image in the received
message or email, then touch the corresponding button to saving it.
In contrast, Tap uses a simple physical interaction that for the first
time can be programmed and connected to the native functionality

Feature Data unit Avg unit
size (KB)

Local
call (ms)

Remote
call (ms)

Bandwidth
(kbps)

Max
freq. (Hz)

Tested settings

Sensor (callback) Sensor event 0.10 0.03 1.10 496.94 700 All sensors, "fastest" rate
Input (callback) Touch event 1.19 0.03 1.10 582.84 200 Rapid multi-touches
Location (callback) Location event 0.72 0.03 2.80 9.04 2 GPS, GLONASS
Microphone Data buffer 3.84 38.93 39.87 769.35 26 Mono 16-bit PCM, 48KHz
Camera (preview) Encoded frame 11.09 0.40 4.27 2666.67 30 720x1280, 4mbps
Camera (picture) Image 1197.70 594.85 961.00 9570.41 1 2592x1944, JPEG
Audio (raw) Data buffer 0.97 4.44 4.66 1545.71 200 Stereo 16-bit PCM, 48KHz
Display (preview) Encoded frame 43.06 3.51 3.97 9967.06 30 720x1280, 10mbps
Clipboard Clipboard item 0.25 1.61 2.98 2.10 1 Copying text
Notification Notificat. post 0.23 16.13 19.27 1.82 1 Notification with an icon
Intent Intent activity 0.21 19.23 20.82 1.61 1 Launching a URL
Calendar Calendar event 0.17 9.25 12.83 1.56 1 Calendar event
Contacts Contact item 43.08 27.07 276.28 328.22 1 Contact with a photo
Media Image 1170.37 385.22 932.59 9508.68 1 Image from gallery

Table 4: Tap Android feature benchmarks

of the app to replace most of that complexity of launching a sepa-
rate communication app, finding or entering contacts, setting up
the actual message for communication, then responding to various
notifications on the receiving side to get the data to the right place.

APIMeasurementsWemeasured the cost of variousdata source
virtualization operations using Tap to quantify its overhead and per-
formance.BecauseTapadds someoverhead to replicate and intercept
APIs via its framework, we first measured the baseline cost of this
API redirection by calling an empty method to give a worst case
measure of performance. Calling an empty method via Tap versus
directly without Tap incurs a 10% overhead on N7, 16% on P3a, and
6% on iPh. The latency is roughly 30µs on N7, so the time overhead
from redirection is small and negligible in practice once the cost of
sending and receiving data is included.

We then measured the cost of accessing various Android fea-
tures locally versus remotely using Tap. Table 4 shows these mea-
surements using N7s connected viaWiFi Direct. All discrete event
measurements were averaged based on multiple runs and stream-
ing event measurements, microphone, camera preview, audio, and
display, were averaged based on one minute of streaming. These
measurements provide a conservative worst case measure of Tap
performance. Tap has the highest overhead for remotely accessing
the featureswith the lowest local latency, such as sensorswhich take
only 30µs to access locally but 1ms to access remotely due to network
latency. While the percentage overhead is high, the actual latency
remains modest. For features that are more data-intensive such as
getting an image from the camera or local storage, the additional
overhead for Tap is due to network bandwidth limits. However, other
than the features involving sending large images, the absolute la-
tencies for accessing other remote features using Tap are generally
small. The latencies are small enough that they are much less than
the response time needed to meet the maximum frequency require-
ments for each data source. For example, video data that must be
delivered at 30 fps takes no more than 4.27 ms per frame with Tap,
roughly eight times faster than needed. Tap is able to deliver good
user-perceived performance for all of the features, including data
sources such as audio and video with real-time requirements.

6.2 Example Apps
To demonstrate that Tap makes it easier to build multi-mobile apps,
we describe some Tap Android apps. Table 5 shows each app, their
total lines of code (LOC), LOC for Tap functionality, and the percent-
age of total LOC needed for Tap functionality. For Epic Swords 2
and Snapchat, the LOC are calculated from decompiling the APK
into Java source files since they are closed source. The LOC show
that Tap makes it simple to include multi-mobile functionality in
an app with modest implementation effort, in all cases constituting
a small percentage of the overall implementation complexity. For
existing apps, this is much less than 1% of the app LOC. For our own
apps built from scratch, the proportion is higher, since we supported
fewer features in the apps, but it is still relatively low compared to
the total app LOC. For all apps, Tap LOCwere less than 250.

Media Sharing GalleryWemodified the stock Android Gallery
app by adding an option to share media via Tap and to listen on
hosts sharing media. A user can select media from the Gallery app,
press "Share via Tap", and tap any number of remote systems. Guest
systems running the same gallery app would prompt their users
to preview, accept, or reject the media. We also developed an iOS
version of the app to do the same, allowingmedia sharing across iOS
and Android using Tap.

Epic Swords 2 is anAndroid game available throughGoogle Play
that allows users to fight opponents with a sword by swiping on the
touchscreen. Swiping on a touchscreen to control the sword is not
intuitive, especially for actions such as a stab which requires a V
swipe. Using Tap, we modified the app to use a smartphone as aWii-
like controller so that the physical movement of the smartphonewas
not only used to control the sword, but the damage inflicted by the
sword was correlated with the speed of the physical swing; a faster
swing caused more damage. Since the game was closed source, we
modified it by decompiling it to smali [14], adding our Tap and app
code, andrecompilingand installing it.Thenewcoderequests remote
sensor data from another system that has been tapped with the
one running the app, converts it to input touches, and incorporates
the damage inflicted based on swing speed. This app-specific use

App Total Tap Tap/Total
Media Sharing Gallery 72593 68 0.09%
Epic Swords 2 219274 191 0.09%
Surround SoundMusic Player 2792 245 8.78%
Multi-channel Audio Recorder 2897 228 7.87%
Snapchat Group Snap 2303299 235 0.01%

Table 5: LOC for apps and Tap appmodifications

of feature data to control the damage inflicted by a sword strike
inherently requires app modifications to provide the required logic.

Surround SoundMusic PlayerAndroid does not support any-
thing above stereo audio on mobile systems, limiting audio fidelity.
Using Tap, we implemented a music player app that provides a
higher fidelity multi-channel surround sound system by sharing
audio across multiple systems. A host mobile system can tap with
other mobile systems, which in turn share their speakers with the
host system. The app examines the number of channels on the mu-
sic file to be played and the surround sound is then automatically
configured based on the positions of the mobile systems acting as
speakers using indoor localization. Configuration hints are provided
to users on how to place the systems if an optimum surround sound
configuration cannot be achieved with the current collection. Sys-
tems can be dynamically added or removed, but testing was mostly
performed with a 5.0 surround sound configuration.

Multi-channelAudioRecorderMobile systemsarenotcapable
of recordingmulti-channel audio such as 3D audio.We implemented
a Tap audio recorder that utilizes its own and other remote systems’
microphones to combine them into a single multi-channel record-
ing. Systems are introduced by tapping. Once the task host app user
presses record,An initial beep is emitted from the app to synchronize
the recordings.

Snapchat Group Snap Snapchat is an existing app that allows
users in the same room to take a photo or video and add filters using
a single camera. Using Tap, we added a new Group Snap function to
the existing Snapchat app to allow users in different places to take
a group photo or video and add filters with all user cameras instead
of needing to crowd around a single camera. We modified Snapchat
using Tap to share cameras of systems involved in a Group Snap task
such that each user has a split-screen view of their own camera and
the cameras of other users. Users can apply their own filters to all
cameras in their view, and take a picture with filters or record live
video with filters to send to their own list of friends. Since we did
not have access to Snapchat source code, we modified the app by
decompiling it to smali, adding our Tap changes, then recompiling
and installing it. To Group Snap, a user double presses the main
Snapchat screen and taps systems with other users to receive invites
to the Group Snap. Users can double press the screen again to invite
more users or to stop the Group Snap, and a user can be invited
without needing to manually add a Snapchat contact.

6.3 Usability Studies
We used the various Tap apps described in Section 6.2 to perform a
small IRB-approved user study to evaluate the user experience with
Tap. There were eight users, half of them technical users, aged 30-39,
and half of them are not, aged 22-41. The users volunteered for up to
two hours. A demo of each app was given initially to users to show

Questions (1 = Strongly disagree, 5 = Strongly agree) Avg
I prefer sharing media through the Tap gallery app 4.88
Sword game with controller is a more intuitive, realistic,
& fun gaming experience

4.86

Surround sound music player provided better audio 4.38
Quality of recorded audio using Tap recorder was better 4.25
Snapchat group snap feature was easy to use 3.88
Snapchat group snap was smooth &well synchronized 4.13
I would like to use the Snapchat group snap feature 3.38
Table 6: Tap app-specific survey questions and scores

them what the apps do and how they work. After using each app,
users were asked questions specific to the usability experience from
strongly agree to stronglydisagree.Thequestions andaverage scores
are listed in Table 6, where higher scores are better. All systemswere
evaluated using infrastructureWiFi unless otherwise indicated.

For the gallery app, users were provided with two P3a and an iPh
to share images.The studycoordinatordiscussed theexistingways to
share media via AirDrop, messaging, or social media. Users were in-
structed to sharemedia through theTap-modifiedgalleryapp,first by
sharingmedia between the twoP3a, thenby sharing fromaP3a to the
iPh. All users agreed that the Tap-modified gallery appwas their pre-
ferred method for transferring media compared to existing methods.

For the sword game, users were handed a N9 running the game
and a P3a to use as a controller. Users were asked to play the game
by swiping on the touchscreen and then by introducing the P3a as
a controller via Tap, where the swinging speed correlates with the
damage inflicted in the game.All users agreed that playing the sword
fighting game using a controller was amuchmore intuitive, realistic,
and fun gaming experience compared to using the touchscreen itself.

For the surround sound music player app, users were given a N7
to listen to multi-channel music. Users were then asked to introduce
four other N7s using Tap. Users listened to the same multi-channel
music but in a surround sound configuration instead. Comparing the
audio from a single system versus using the surround sound music
player with multiple systems, most users agreed that the surround
sound audio quality produced by the Tap app is much better.

For the multi-channel audio recording app, users were given a
P3a to record via the local Android app and listen to the recording
through headphones. Users were then asked to introduce a P3a and
iPh via Tap to run the Tapmulti-channel recording app, record audio,
and then listen to the recording using headphones. Users agreed the
quality of the recorded audio using the Tap multi-channel recorder
is better. Users who chose "Neither" for audio, mentioned they rarely
use headphones or do not prefer surround systems in general.

ForSnapchat,usersweregivenaN9with theTap-modifiedSnapchat
app. They were asked to initiate a group snap with the study coor-
dinator holding a N9, and note the process of starting a group snap
and the video quality. Users thought the Group Snap video quality
was good, but those who rarely use Snapchat were less enthusiastic
about the feature.

Afterusersused theapps, theywereasked tofill a SystemUsability
Scale (SUS) [76] ten-item questionnaire for Tap. This is an industry-
standard questionnaire used in many similar studies [48, 65–68] as a
reliable tool tomeasure usability. The average SUS score, a percentile,
for Tap was 82 out of 100. A score above 68 is considered above av-
erage and Tap substantially exceeded that score, indicating a high

degree of usability overall. Our usability studies show that users
appreciate an easy way to connect systems for a better experience.

7 RELATEDWORK
Various approaches have explored ways to compose mobile sys-
tems [16]. Early work explored dynamic composition of mobile sys-
tems to share discoverable resources for nearby systems to rely on
other nearby components, such as using a larger TV display nearby
rather than combining displays of multiple systems [80]. System-
level sharing approaches such asRio [2] andMobile Plus [60] provide
one-to-one transparent sharing, while M2 [1] provides optimized
performance for transparent sharing of multiple devices. Flux [38]
migrates apps across Android systems. FLUID [59] introduces a sys-
tem to migrate or replicate user interface (UI) elements in apps to
nearby systems. DynaMix [20] provides a restrictive framework for
efficiently sharing resources such as CPU, memory, and storage over
different IoT devices. These platform approaches require system
changes that make them difficult to deploy in practice, and cannot
effectively support app-specific behaviors. In contrast, Tap takes an
app-level sharingapproachwhich requiresmodificationsof apps, but
does not require any system changes and supports a broader range of
app functionality by allowing apps to express app-specific behavior
regarding how remote resources are used. For example, Tap enables
the Epic Swords 2 app described in Section 6.2 to base the damage
inflicted by a sword on the swing speed of a remote device, an app-
specific behavior not possible with the original app as it was limited
to local touchscreen input. Various industry solutions [6, 9, 10, 15, 29,
55, 58] also provide one-to-one sharing of display content, messages,
andother features.UnlikeTap,noneof theseapproachesprovideeasy
ways of connecting systems together to create the actual dynamic
compositionofmobile systems, andnoneof themprovide support for
developers to create apps that can leverage multiple mobile systems.

Tap introduces data source virtualization to enable composition
by virtualizing the data source namespace. Namespace virtualization
is the key idea used by containers to isolate processes [4, 11, 18, 24,
39, 49, 62]. Data virtualization [77] has also been used to provide a
shared view for databases. While these concepts are somewhat re-
lated, Tap uses virtualization in a newway for a new purpose.While
M2 relies on existing APIs and data sources to share features, Tap
uses a fundamentally different approach. M2 is designed to support
unmodified apps, which are not designed to interact with both local
and remote data sources, by using a local data source as a proxy for
a remote data source so apps only see one data source, not multiple
data sources. In contrast, Tap is designed to allow apps to explicitly
manage and interact with multiple data sources. Data source virtual-
ization in Tap provides a way for all multiple local and remote data
sources to be used with existing APIs.

To make it easier to connect mobile systems, proximity discov-
ery approaches have used Bluetooth signal strength [31, 43, 44, 52],
acoustics [31], gesture-based pairing [37, 57], and QR codes [27], but
these donotwork aswell asNFC.AirDrop [8] facilitates connectivity
between Apple systems and uses Bluetooth for discovery, but is also
not as easy to use as NFC [23, 46, 63, 75]. Android Beam [33] and
Android S Beam [69] both use NFC for discovery, but Android Beam
uses Bluetooth while Android S Beam [69] usesWiFi Direct for data

communication. A precursor to Android Beam, Bump [17] could ex-
change contacts and files between systems, but lacked a peer-to-peer
connectivity mechanism, instead requiring connectivity to cloud in-
frastructure to allow systems to bump against each other to connect
through the cloud. All of these approaches only offer connectivity
through a single pre-selected medium and only to share files or con-
tacts. Unlike Tap, they do not provide support for heterogeneous
mobile systems and networks, do not provide a way to adaptively
leverage infrastructure networking for data communication, and do
not provide a programmable interface to allow apps to leverage these
mechanisms for general feature sharing. Other work for convenient
system pairing relied heavily on the use of additional hardware as
covered in spontaneous device association [22] and electromagnetic
sensing based research [21, 35, 50, 53, 79, 82, 83]. Tapprovides a cross-
platform solution to easily identify and authenticate nearby systems
without requiring additional hardware or network infrastructure.

Various frameworks have been developed to use nearby sys-
tems. Beam [71], different fromAndroid Beam, provides a developer
friendly framework in an Internet-of-Things (IoT) environment to
discoverandusesensingdevices,mostly fordatagathering.Proxemic
systems define the interactions and types of interactions between
nearby systems,without considering cross-platform support or prox-
imitydetectionwithout additional hardware [34, 54].Conductor [36]
shares tasks and data across systems. SPF [12] utilizes AllJoyn [61]
to support proximity connectivity. Junction [25] provides a limited
connectivity API via NFC. These frameworks primarily focus on
connectivity, not feature sharing. Liquid software [13, 28] refers
to software that can operate seamlessly across multiple systems,
but only offers basic app collaboration. Unlike Tap, none of these
approaches provide a multi-network connectivity mechanism or
make it possible to reuse existing APIs to build apps across dynamic
compositions of mobile systems.

8 CONCLUSIONS
Tap is an app framework to make it easy for users to dynamically
compose collections of heterogeneous mobile systems and devel-
opers to write apps that make use of those impromptu collections.
Tap enables users to tap systems together for ephemeral interac-
tions. Tapping triggers a NFC-based mechanism that exchanges
connectivity information and security credentials, allowing systems
to securely connect through heterogeneous networks without user
accounts, email addresses, phone numbers, or cloud infrastructure.
Tap makes it possible and easy for apps to use existing mobile plat-
formAPIs acrossmobile systemsbyvirtualizingdata sources, such as
media, cameras, and speakers, so that local and remote hardware and
software features can be combined together upon tapping. We have
built a Tap prototype and modified and implemented various apps
using Tap, demonstrating that it is easy to use and enables apps to
provide powerful new functionality across multiple mobile systems.
Our results show that Tapworks across unmodifiedAndroid and iOS
systems, has good performance, and is user and developer friendly.

9 ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-1717801, CNS-
1563555, CCF-1918400, and CNS-2052947.

REFERENCES
[1] Naser AlDuaij, Alexander Van’t Hof, and Jason Nieh. 2019. Heterogeneous Multi-

Mobile Computing. In Proceedings of the 17th ACM International Conference onMo-
bile Systems,Applications, andServices (MobiSys 2019). Seoul, SouthKorea, 494–507.

[2] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014. Rio: A
System Solution for Sharing I/O BetweenMobile Systems. In Proceedings of the
12th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys 2014). BrettonWoods, NH, 259–272.

[3] Jeremy Andrus, Naser AlDuaij, and Jason Nieh. 2017. Binary Compatible
Graphics Support in Android for Running iOS Apps. In Proceedings of the 2017
ACM/IFIP/USENIX International Middleware Conference (Middleware 2017). Las
Vegas, NV, 55–67.

[4] Jeremy Andrus, Christoffer Dall, Alex Van’t Hof, Oren Laadan, and Jason Nieh.
2011. Cells: A Virtual Mobile Smartphone Architecture. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP 2011). Cascais, Portugal,
173–187.

[5] JeremyAndrus,AlexanderVan’tHof,NaserAlDuaij, ChristofferDall,NicolasVien-
not, and Jason Nieh. 2014. Cider: Native Execution of iOS Apps on Android. In Pro-
ceedings of the 19th International Conference on Architectural Support for Program-
mingLanguages andOperating Systems (ASPLOS 2014). Salt LakeCity,UT, 367–381.

[6] Apple Inc. iCloud. https://www.icloud.com.
[7] Apple Inc. NFCISO7816Tag. https://developer.apple.com/documentation/corenfc/

nfciso7816tag.
[8] Apple Inc. 2018. Share Content with AirDrop on Your iPhone, iPad, or iPod touch.

https://support.apple.com/en-us/HT204144.
[9] Apple Inc. 2019. How to AirPlay Content from Your iPhone, iPad, or iPod touch.

https://support.apple.com/en-gb/HT204289.
[10] Apple Inc. 2019. Use Continuity to Connect Your Mac, iPhone, iPad, iPod touch,

and AppleWatch. https://support.apple.com/en-us/HT204681.
[11] Ricardo Baratto, Shaya Potter, Gong Su, and Jason Nieh. 2004. MobiDesk: Mobile

Virtual Desktop Computing. In Proceedings of the 10th Annual ACM International
Conference on Mobile Computing and Networking (MobiCom 2004). Philadelphia,
PA, 1–15.

[12] Luciano Baresi, Laurent-Walter Goix, Sam Guinea, Valerio Panzica La Manna,
Jacopo Aliprandi, and Dario Archetti. 2015. SPF: AMiddleware for Social Inter-
action in Mobile Proximity Environments. In Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015). Florence, Italy, 79–88.

[13] Luciano Baresi, Anita Imani, Cristina Fra, andMassimo Valla. 2018. LIQDROID:
Towards Seamlessly Distributed Android Applications. In Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems (MOBILESoft
2018). Gothenburg, Sweden, 597–601.

[14] Ben Gruver. 2017. smali/baksmali. http://www.baksmali.com.
[15] BlackBerry. BlackBerry Blend - Desktop Software for BlackBerry.

https://us.blackberry.com/software/desktop/blackberry-blend.
[16] Frederik Brudy, Christian Holz, Roman Radle, Chi-Jui Wu, Steven Houben,

Clemens Nylandsted Klokmose, and Nicolai Marquardt. 2019. Cross-Device
Taxonomy: Survey, Opportunities and Challenges of Interactions Spanning
Across Multiple Devices. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI 2019). Glasgow, United Kingdom, 1–28.

[17] Bump Technologies. Bump - Easily Transfer Photos, Files and Contacts between
Your Phone and Computer. http://www.bu.mp.

[18] Canonical Ltd. Linux Containers. https://linuxcontainers.org/.
[19] Centers for Disease Control and Prevention. Coronavirus (COVID-19).

https://www.cdc.gov/coronavirus/2019-ncov/index.html.
[20] Dongju Chae, Joonsung Kim, Gwangmu Lee, Hanjun Kim, Kyung-Ah Chang,

Hyogun Lee, and Jangwoo Kim. 2018. DynaMix: Dynamic Mobile Device
Integration for Efficient Cross-device Resource Sharing. In Proceedings of the 2018
USENIX Annual Technical Conference (USENIX ATC 2018). Boston, MA, 71–83.

[21] Ke-Yu Chen, Gabe A. Cohn, Sidhant Gupta, and Shwetak N. Patel. 2013. uTouch:
SensingTouchGesturesonUnmodifiedLCDs. InProceedings of the 2013CHIConfer-
ence on Human Factors in Computing Systems (CHI 2013). Paris, France, 2581–2584.

[22] Ming Ki Chong, Rene Mayrhofer, and Hans Gellersen. 2014. A Survey of User
Interaction for Spontaneous Device Association. ACM Computing Surveys 47,
1 (May 2014), 8:1–8:40.

[23] Christian Zibreg. 2016. AirDrop not working? Try these troubleshooting tips.
https://www.idownloadblog.com/2016/02/20/airdrop-troubleshooting-tips-2/.

[24] Docker Inc. Get Started with Docker. https://www.docker.com/.
[25] Ben Dodson, Aemon Cannon, Te-Yuan Huang, and Monica S. Lam. 2011. The

Junction Protocol for Ad Hoc Peer-to-Peer Mobile Applications. Technical Report.
Computer Science Department, Stanford University.

[26] Elizabeth Schulze. 2019. Contactless cards are just catching on in the US - years
after the rest of the world. https://www.cnbc.com/2019/04/12/contactless-cards-
and-apple-pay-are-just-catching-on-in-the-us.html.

[27] Florian Draschbacher. Fast File Transfer - Apps on Google Play. https://play.
google.com/store/apps/details?id=com.floriandraschbacher.fastfiletransfer.

[28] Andrea Gallidabino, Cesare Pautasso, TommiMikkonen, Kari Systa, Jari-Pekka
Voutilainen, and Antero Taivalsaari. 2017. Architecting Liquid Software. Journal
of Web Engineering 16, 5-6 (Sept. 2017), 433–470.

[29] Google Inc. Chromecast. https://www.google.com/chromecast/.
[30] Google Inc. Host-Based Card Emulation Overview | Android Developers.

https://developer.android.com/guide/topics/connectivity/nfc/hce.
[31] Google Inc. Nearby | Google Developers. https://developers.google.com/nearby.
[32] Google Inc. NfcAdapter | Android Developers. https://developer.android.com/

reference/android/nfc/NfcAdapter.
[33] Google Inc. Sharing files with NFC | Android Developers. https:

//developer.android.com/training/beam-files.
[34] Saul Greenberg, Nicolai Marquardt, Till Ballendat, Rob Diaz-Marino, andMiaosen

Wang. 2011. Proxemic Interactions: The New Ubicomp? Interactions 18, 1 (Jan.
2011), 42–50.

[35] Sidhant Gupta, Matthew S. Reynolds, and Shwetak N. Patel. 2010. ElectriSense:
Single-point Sensing Using EMI for Electrical Event Detection and Classification
in theHome. In Proceedings of the 12th ACM International Conference on Ubiquitous
Computing (UbiComp 2010). Copenhagen, Denmark, 139–148.

[36] Peter Hamilton and Daniel J. Wigdor. 2014. Conductor: Enabling and Understand-
ing Cross-device Interaction. In Proceedings of the 2014 CHI Conference on Human
Factors in Computing Systems (CHI 2014). Toronto, Canada, 2773–2782.

[37] KenHinckley, Gonzalo Ramos, Francois Guimbretiere, Patrick Baudisch, andMarc
Smith. 2004. Stitching: Pen Gestures That SpanMultiple Displays. In Proceedings
of the Working Conference on Advanced Visual Interfaces (AVI 2004). Gallipoli, Italy,
23–31.

[38] Alexander Van’t Hof, Hani Jamjoom, Jason Nieh, and Dan Williams. 2015.
Flux: Multi-Surface Computing in Android. In Proceedings of the 7th European
Conference on Computer Systems (EuroSys 2015). Bordeaux, France, 24:1–17.

[39] Alexander Van’t Hof and Jason Nieh. 2019. AnDrone: Virtual Drone Computing
in the Cloud. In Proceedings of the 11th European Conference on Computer Systems
(EuroSys 2019). Dresden, Germany, 6:1–16.

[40] Internet Society. 2018. State of IPv6 Deployment 2018. https:
//www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018/.

[41] Ivan Jenic. 2019. Fix: Dropbox for Android not showing files. https:
//mobileinternist.com/dropbox-android-not-showing-files.

[42] Jessica Dickler. 2019. As of today: an NYC commute without cash.
https://www.cnbc.com/2019/05/31/the-new-york-city-subway-systems-
cashless-payments-start-friday.html.

[43] Tero Jokela,MingKiChong, Andres Lucero, andHansGellersen. 2015. Connecting
Devices for Collaborative Interactions. ACM Interactions 22, 4 (June 2015), 39–43.

[44] Tero Jokela and Andres Lucero. 2014. FlexiGroups: Binding Mobile Devices
for Collaborative Interactions in Medium-sized Groups with Device Touch. In
Proceedings of the 16th International Conference on Human-computer Interaction
with Mobile Devices and Services (MobileHCI 2014). Toronto, Canada, 369–378.

[45] Jonny Evans. 2018. How to fix iCloud when it stops working.
https://www.computerworld.com/article/3322896/how-to-fix-icloud-when-it-
stops-working.html.

[46] Karen Haslam. 2019. How to fix AirDrop problems. https://www.macworld.co.
uk/how-to/mac/fix-airdrop-problems-3693158/.

[47] Kevin Peachey. 2019. Half of all debit card payments now contactless.
https://www.bbc.com/news/business-50015312.

[48] John S. Koh, StevenM. Bellovin, and Jason Nieh. 2019. Why Joanie Can Encrypt:
Easy Email Encryptionwith EasyKeyManagement. In Proceedings of the 11th Euro-
pean Conference on Computer Systems (EuroSys 2019). Dresden, Germany, 2:1–16.

[49] Oren Laadan and Jason Nieh. 2010. Operating System Virtualization: Practice
and Experience. In Proceedings of the 3rd Annual Haifa Experimental Systems
Conference (SYSTOR 2010). Haifa, Israel.

[50] Gierad Laput, Chouchang Yang, Robert Xiao, Alanson Sample, and Chris
Harrison. 2015. EM-Sense: Touch Recognition of Uninstrumented, Electrical and
Electromechanical Objects. In Proceedings of the 28th Annual Symposium on User
Interface Software and Technology (UIST 2015). Charlotte, NC, 157–166.

[51] Alexander Loffler, Luciano Pica, Hilko Hoffmann, and Philipp Slusallek. 2012.
Networked Displays for VR Applications: Display as a Service (DaaS). In Virtual
Environments 2012: Proceedings of Joint Virtual Reality Conference of ICAT, EuroVR
and EGVE (JVRC) (ICAT/EGVE/EuroVR 2012). Madrid, Spain, 37–44.

[52] Andres Lucero, Tero Jokela, Arto Palin, Viljakaisa Aaltonen, and Jari Nikara. 2012.
EasyGroups: Binding Mobile Devices for Collaborative Interactions. In CHI 2012
Extended Abstracts on Human Factors in Computing Systems (CHI EA 2012). Austin,
TX, 2189–2194.

[53] TakuyaMaekawa, Yasue Kishino, Yasushi Sakurai, and Takayuki Suyama. 2011.
Recognizing the Use of Portable Electrical Devices with Hand-worn Magnetic
Sensors. In Proceedings of the 9th International Conference on Pervasive Computing
(Pervasive 2011). San Francisco, CA, 276–293.

[54] Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and Saul Greenberg.
2011. The Proximity Toolkit: Prototyping Proxemic Interactions in Ubiquitous
Computing Ecologies. In Proceedings of the 24th Annual Symposium on User
Interface Software and Technology (UIST 2011). Santa Barbara, CA, 315–326.

[55] Microsoft Corporation. Windows Continuum forWindows 10 Phones andMobile.
https://www.microsoft.com/en-us/windows/continuum.

[56] Sungwon Nam, Sachin Deshpande, Venkatram Vishwanath, Byungil Jeong, Luc
Renambot, and Jason Leigh. 2010. Multi-application Inter-tile Synchronization on

https://www.icloud.com
https://developer.apple.com/documentation/corenfc/nfciso7816tag
https://developer.apple.com/documentation/corenfc/nfciso7816tag
https://support.apple.com/en-us/HT204144
https://support.apple.com/en-gb/HT204289
https://support.apple.com/en-us/HT204681
http://www.baksmali.com
https://us.blackberry.com/software/desktop/blackberry-blend
http://www.bu.mp
https://linuxcontainers.org/
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.idownloadblog.com/2016/02/20/airdrop-troubleshooting-tips-2/
https://www.docker.com/
https://www.cnbc.com/2019/04/12/contactless-cards-and-apple-pay-are-just-catching-on-in-the-us.html
https://www.cnbc.com/2019/04/12/contactless-cards-and-apple-pay-are-just-catching-on-in-the-us.html
https://play.google.com/store/apps/details?id=com.floriandraschbacher.fastfiletransfer
https://play.google.com/store/apps/details?id=com.floriandraschbacher.fastfiletransfer
https://www.google.com/chromecast/
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://developers.google.com/nearby
https://developer.android.com/reference/android/nfc/NfcAdapter
https://developer.android.com/reference/android/nfc/NfcAdapter
https://developer.android.com/training/beam-files
https://developer.android.com/training/beam-files
https://www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018/
https://www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018/
https://mobileinternist.com/dropbox-android-not-showing-files
https://mobileinternist.com/dropbox-android-not-showing-files
https://www.cnbc.com/2019/05/31/the-new-york-city-subway-systems-cashless-payments-start-friday.html
https://www.cnbc.com/2019/05/31/the-new-york-city-subway-systems-cashless-payments-start-friday.html
https://www.computerworld.com/article/3322896/how-to-fix-icloud-when-it-stops-working.html
https://www.computerworld.com/article/3322896/how-to-fix-icloud-when-it-stops-working.html
https://www.macworld.co.uk/how-to/mac/fix-airdrop-problems-3693158/
https://www.macworld.co.uk/how-to/mac/fix-airdrop-problems-3693158/
https://www.bbc.com/news/business-50015312
https://www.microsoft.com/en-us/windows/continuum

Ultra-high-resolution DisplayWalls. In Proceedings of the 1st Annual ACM SIGMM
Conference on Multimedia Systems (MMSys 2010). Phoenix, AZ, 145–156.

[57] Heidi Selmer Nielsen, Marius Pallisgaard Olsen, Mikael B. Skov, and Jesper Kjeld-
skov. 2014. JuxtaPinch: AnApplication for CollocatedMulti-device Photo Sharing.
In Proceedings of the 16th International Conference on Human-computer Interaction
with Mobile Devices and Services (MobileHCI 2014). Toronto, Canada, 417–420.

[58] Nintendo Co., Ltd. Nintendo Switch. http://www.nintendo.com/switch.
[59] Sangeun Oh, Ahyeon Kim, Sunjae Lee, Kilho Lee, Dae R. Jeong, Steven Y. Ko, and

Insik Shin. 2019. FLUID: Flexible User Interface Distribution for Ubiquitous Multi-
Device Interaction. In Proceedings of the 25th Annual International Conference on
Mobile Computing and Networking (MobiCom 2019). Los Cabo, Mexico, 1–16.

[60] Sangeun Oh, Hyuck Yoo, Dae R. Jeong, Duc Hoang Bui, and Insik Shin. 2017.
Mobile Plus: Multi-deviceMobile Platform for Cross-device Functionality Sharing.
In Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys 2017). Niagara Falls, NY, 332–344.

[61] Open Connectivity Foundation. AllJoyn Open Source Project. https:
//openconnectivity.org/developer/reference-implementation/alljoyn.

[62] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. 2002. The Design
and Implementation of Zap: A System for Migrating Computing Environments. In
Proceedings of the 5th Symposium on Operating Systems Design and Implementation
(OSDI 2002). Boston, MA, 361–376.

[63] Rene Ritchie. 2020. AirDrop not working? Here’s the fix! https:
//www.imore.com/how-to-fix-airdrop-iphone-ipad.

[64] Kay Romer. 2001. Time Synchronization in AdHocNetworks. In Proceedings of the
2nd ACM International Symposium onMobile Ad Hoc Networking and Computing
(MobiHoc 2001). Long Beach, CA, 173–182.

[65] Scott Ruoti, Jeff Andersen, Scott Heidbrink, Mark O’Neill, Elham Vaziripour,
JustinWu, Daniel Zappala, and Kent Seamons. 2016. "We’re on the Same Page":
A Usability Study of Secure Email Using Pairs of Novice Users. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (CHI 2016).
San Jose, CA, 4298–4308.

[66] Scott Ruoti, Jeff Andersen, Travis Hendershot, Daniel Zappala, and Kent Seamons.
2016. PrivateWebmail 2.0: Simple and Easy-to-Use Secure Email. In Proceedings
of the 29th Annual Symposium on User Interface Software and Technology (UIST
2016). Tokyo, Japan, 461–472.

[67] Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent Seamons. 2015. Why Johnny
Still, Still Can’t Encrypt: Evaluating the Usability of a Modern PGP Client. arXiv
e-prints (Oct. 2015), 5 pages. arXiv:1510.08555 [cs.CR]

[68] Scott Ruoti, Nathan Kim, Ben Burgon, Timothy van der Horst, and Kent Seamons.
2013. Confused Johnny: When Automatic Encryption Leads to Confusion and
Mistakes. In Proceedings of the 9th Symposium on Usable Privacy and Security
(SOUPS 2013). Newcastle, United Kingdom, 5:1–5:12.

[69] Samsung. What is S Beam in Samsung Smartphones? https://www.samsung.com/
in/support/mobile-devices/what-is-s-beam-in-samsung-smartphones/.

[70] Arne Schmitz, Ming Li, Volker Schonefeld, and Leif Kobbelt. 2010. Ad-Hoc
Multi-Displays for Mobile Interactive Applications. In Proceedings of the 31st
AnnualConference of the EuropeanAssociation forComputerGraphics (Eurographics

2010). Norrkoping, Sweden, 45–52.
[71] Chenguang Shen, Rayman Preet Singh, Amar Phanishayee, Aman Kansal, and

Ratul Mahajan. 2016. Beam: Ending Monolithic Applications for Connected
Devices. In Proceedings of the 2016 USENIX Annual Technical Conference (USENIX
ATC 2016). Denver, CO, 143–157.

[72] Ben Shneiderman and Catherine Plaisant. 2004. Designing the User Interface:
Strategies for Effective Human-Computer Interaction (4th Edition). PearsonAddison
Wesley.

[73] StephanieWalden. Banking After COVID-19: The Rise of Contactless Payments
in the U.S. https://www.forbes.com/advisor/banking/banking-after-covid-19-
the-rise-of-contactless-payments-in-the-u-s/.

[74] The Khronos Group, Inc. OpenGL - The Industry Standard for High Performance
Graphics. https://www.opengl.org.

[75] Tim Brookes. 2019. AirDrop Not Working? Here’s How to Fix It. https:
//www.howtogeek.com/442534/airdrop-not-working-heres-how-to-fix-it/.

[76] U.S. Department of Health &Human Services. SystemUsability Scale (SUS). https:
//www.usability.gov/how-to-and-tools/methods/system-usability-scale.html.

[77] Rick Van Der Lans. 2012. Data Virtualization for Business Intelligence Systems:
RevolutionizingData Integration for DataWarehouses (first ed.). MorganKaufmann
Publishers Inc., San Francisco, CA.

[78] Vikas Saraogi. 2020. Contactless payments will be the new normal for shop-
pers in the post Covid-19 world. https://newsroom.mastercard.com/asia-
pacific/2020/05/20/contactless-payments-will-be-the-new-normal-for-
shoppers-in-the-post-covid-19-world/.

[79] Edward J. Wang, Tien-Jui Lee, Alex Mariakakis, Mayank Goel, Sidhant Gupta,
and Shwetak N. Patel. 2015. MagnifiSense: Inferring Device Interaction Using
Wrist-worn Passive Magneto-inductive Sensors. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp
2015). Osaka, Japan, 15–26.

[80] Roy Want, Trevor Pering, Shivani Sud, and Barbara Rosario. 2008. Dynamic
Composable Computing. In Proceedings of the 9thWorkshop on Mobile Computing
Systems and Applications (HotMobile 2008). Napa Valley, CA, 17–21.

[81] Wi-Fi Alliance. 2018. Wi-Fi Peer-to-Peer (P2P) Technical Specification v1.7.
https://www.wi-fi.org/file/wi-fi-peer-to-peer-p2p-technical-specification-v17.

[82] Robert Xiao, Gierad Laput, Yang Zhang, and Chris Harrison. 2017. Deus EM
Machina: On-Touch Contextual Functionality for Smart IoT Appliances. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(CHI 2017). Denver, CO, 4000–4008.

[83] Chouchang Yang and Alanson P. Sample. 2016. EM-ID: Tag-less Identification
of Electrical Devices via Electromagnetic Emissions. In Proceedings of the 10th
Annual IEEE International Conference on RFID (RFID 2016). Orlando, FL, 1–8.

[84] Katie Young. 2017. Digital Consumers Own 3.2 Connected Devices - Global-
WebIndex Blog. https://blog.globalwebindex.com/chart-of-the-day/digital-
consumers-own-3-point-2-connected-devices/.

[85] Zoom. In this together. Keeping you securely connected wherever you are.
https://www.zoom.us/.

http://www.nintendo.com/switch
https://openconnectivity.org/developer/reference-implementation/alljoyn
https://openconnectivity.org/developer/reference-implementation/alljoyn
https://www.imore.com/how-to-fix-airdrop-iphone-ipad
https://www.imore.com/how-to-fix-airdrop-iphone-ipad
https://arxiv.org/abs/1510.08555
https://www.samsung.com/in/support/mobile-devices/what-is-s-beam-in-samsung-smartphones/
https://www.samsung.com/in/support/mobile-devices/what-is-s-beam-in-samsung-smartphones/
https://www.forbes.com/advisor/banking/banking-after-covid-19-the-rise-of-contactless-payments-in-the-u-s/
https://www.forbes.com/advisor/banking/banking-after-covid-19-the-rise-of-contactless-payments-in-the-u-s/
https://www.opengl.org
https://www.howtogeek.com/442534/airdrop-not-working-heres-how-to-fix-it/
https://www.howtogeek.com/442534/airdrop-not-working-heres-how-to-fix-it/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://newsroom.mastercard.com/asia-pacific/2020/05/20/contactless-payments-will-be-the-new-normal-for-shoppers-in-the-post-covid-19-world/
https://newsroom.mastercard.com/asia-pacific/2020/05/20/contactless-payments-will-be-the-new-normal-for-shoppers-in-the-post-covid-19-world/
https://newsroom.mastercard.com/asia-pacific/2020/05/20/contactless-payments-will-be-the-new-normal-for-shoppers-in-the-post-covid-19-world/
https://www.wi-fi.org/file/wi-fi-peer-to-peer-p2p-technical-specification-v17
https://blog.globalwebindex.com/chart-of-the-day/digital-consumers-own-3-point-2-connected-devices/
https://blog.globalwebindex.com/chart-of-the-day/digital-consumers-own-3-point-2-connected-devices/
https://www.zoom.us/

	Abstract
	1 Introduction
	2 Usage Model
	3 Developer API
	4 Architecture
	5 Implementation
	6 Evaluation
	6.1 Performance Measurements
	6.2 Example Apps
	6.3 Usability Studies

	7 Related Work
	8 Conclusions
	9 Acknowledgments
	References

