
Computers & Security 157 (2025) 104565

A
0

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Full length article

VeracOS: An operating system extension for the veracity of files
Naser AlDuaij
Department of Computer Science, Kuwait University, Kuwait

A R T I C L E I N F O

Keywords:
Mobile and ubiquitous computing
Operating systems
Systems security
Internet of Things
Other services and applications topics
File authentication
Generative artificial intelligence
Deepfake

 A B S T R A C T

As generative artificial intelligence has improved, there is a growing trend of generating false media for
spreading misinformation, driving propaganda, and theft through enhanced social engineering. This creates a
global concern, leading to a heavy demand for verification and fact-checking of information. Existing solutions
aim at educating users or using artificial intelligence to fact-check and detect false documents or media. While
these methods provide a measure for combating misinformation, many of these existing methods are inaccurate.
Methods such as deepfake detection for videos are an uphill battle as deepfake generation keeps improving
and newer methods are created to subvert deepfake detection techniques. VeracOS is introduced and presented
as an operating system modification that is easily deployed, can certify files that are created, and ensures that
any user can automatically check the authenticity of files across any existing application or platform. VeracOS
invents a unique algorithm for certifying and verifying files. VeracOS aims to revolutionize the war against
misinformation and exploitation of fake content by introducing several key features: VeracOS allows users or
corporations to easily and automatically certify their media. Unlike existing solutions, VeracOS avoids intensive
computations, specialized hardware, and private data sharing. VeracOS also allows any user to automatically
be notified if the file they are viewing is verified to be authentic. VeracOS does not require the modification
of existing applications nor does it require the sharing of private information such as what files or media are
being viewed by a user. These key features provide a highly portable and easily deployed system for users of
any operating system, including Internet of Things devices and mobile operating systems. Using media files
such as images and videos as exemplary file types and using Android as an exemplary operating system, a
VeracOS prototype was implemented to allow any user to automatically certify or verify their media files. The
results show that VeracOS is easy to use and can be easily run on smartphones without the need for specialized
systems, applications, or hardware.
1. Introduction

With the rapid advancements in generative artificial intelligence,
computer graphics, and computing power, the ability to generate media
based on existing media has never been easier (Zewe, 2023; Ray, 2023;
Google LLC, 2024g). This has led to the rampant spread of generated
media such as images, audio, and videos that are not only fake but in
many cases representative of the likeness of other individuals (Juefei-
Xu et al., 2022; KPMG, 2024; GZERO Staff, 2023). These generated
and realistic media are often referred to as deepfakes (MIT Media
Lab, 2024), a coined word that is a portmanteau of the machine
learning method called ‘‘deep learning’’ and the word ‘‘fake’’ (Merriam-
Webster, 2024). Global concerns have been raised regarding deepfake
media as they can be used to manipulate or deceive people (Philmlee,
2023; Bartz, 2023; Jackson, 2023; Toews, 2020; Hsu, 2023; O’Sulli-
van, 2019; ETtech, 2023; Department of Homeland Security, 2024;
eSafetyCommissioner - Australian Government, 2024; Britt, 2023).

E-mail address: naser.alduaij@ku.edu.kw.

To illustrate the gravity of these global concerns, consider these
four real scenarios that were reported: (1) A finance employee at a
multinational firm pays out 25 million U.S. dollars after a video call
with a deepfake ‘‘chief financial officer’’ (Chen and Magramo, 2024).
(2) Scammers using deepfake videos for extortion (Kan, 2023) such
as a case of extorting a senior citizen using a deepfake video of a
retired officer (Pandey, 2023). (3) An explicit deepfake video of a
teenager going viral (Wong, 2024). (4) A deepfake video of a politician
that may sway voters such as a video of the vice president of the
United States of America showing her speaking unintelligibly going
viral (Matt Novak, 2023). These are all examples of deepfake media
causing privacy violations, spreading misinformation, personal harm,
legal issues, ethical concerns, and driving propaganda (Philmlee, 2023).

To combat extortion, blackmail, misinformation, and any malice
from deepfake media, several governments have introduced laws to
classify deepfake media used for malicious reasons as criminal of-
fences (US Congress, 2024a,b; California Legislative Information, 2024;
https://doi.org/10.1016/j.cose.2025.104565
Received 23 March 2025; Received in revised form 9 May 2025; Accepted 6 June 2
vailable online 12 July 2025
167-4048/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
https://orcid.org/0000-0002-0028-5902
mailto:naser.alduaij@ku.edu.kw
https://doi.org/10.1016/j.cose.2025.104565
https://doi.org/10.1016/j.cose.2025.104565

N. AlDuaij Computers & Security 157 (2025) 104565
Reuters, 2024). To detect these deepfake media, several initiatives
have been launched by governments, corporations, and academia. For
example, the Defense Advanced Research Projects Agency (DARPA)
has funded a project to allow individuals to compete for significant
prizes by creating tools to detect deepfake media (Knight, 2018). Many
corporations have also taken active measures to handle deepfake media
on their platforms (X. Corp., 2024; Paul, 2020; Meta, 2024b). Some
academics and corporations such as Amazon, Facebook, and Microsoft
have partnered to also create a deepfake detection challenge for com-
petitors to provide the best deepfake media detection tool (Kaggle,
2024). Academic research has also been conducted on the detection of
deepfake media (MIT Media Lab, 2024; Groh et al., 2022). Additionally,
global awareness of deepfake media has been focused on educating and
training users to identify deepfake media (Philmlee, 2023; Groh et al.,
2022). This shows a growing trend and focus towards deterring the
creation of deepfake media and also the detection of deepfake media.

Deepfake media detection can be costly in terms of computation
and time (Barnaciak and Ross, 2022), and generally requires training
and learning effort from users who are also presumed to be technical
users (Groh et al., 2022). In many cases, these detection methods or
tools require sharing of the media with third parties or the cloud as
they are provided through mobile applications or websites, creating
privacy concerns for users (Peras and Mekovec, 2022; Soveizi et al.,
2023). Even when these detection techniques are run locally, they
are not fully accurate and might result in false negatives or false
positives (Barnaciak and Ross, 2022). Additionally, newer detection
technologies are constantly being subverted by newer technologies for
deepfake creation (Barnaciak and Ross, 2022).

Instead of examining media and detecting which ones are deep-
fake and which ones are authentic, one can avoid deepfake media by
providing the media through an authorized outlet such as a website.
For example, news outlets can release their media for users to view
them directly on their websites. However, many media items are for-
warded and shared via E-mail or through social media instead and
not through authorized websites (Belle Wong, 2023). For individuals,
a media author can post their media directly on their own website
and provide it with a secure cryptographic hash function value for the
media itself. Users can compute the hash value of the media item and
compare it with the one provided by the author. However, this is a
tedious process for the author, who must create separate hash values for
every media item shared, and the user, to verify every media item with
every unique hash value. Note that many users might not be technical
enough to understand this process. More importantly, a large number
of media items are forwarded or shared via E-mail or through social
media and not downloaded by the users directly from the author or
source (Belle Wong, 2023).

VeracOS addresses these issues stemming from deepfake media
by introducing operating system modifications to produce and verify
verifiable media. VeracOS can be added to any system that can create
images, audio, or videos. Specifically, any system that creates media
or supports a camera or microphone would benefit from VeracOS
modifications. For every created media item, VeracOS automatically
signs the media item with a fixed unique and private author or creator
signature and appends the value to the end of the media item file. Note
that VeracOS does not introduce new media formats, does not modify
existing media formats, and still maintains backward compatibility for
media viewers and players. For users receiving a media item, VeracOS
can automatically verify the authenticity of the media item by verifying
the signature in the media file. Users only require a single unique
author or creator signature, not a separate signature per media item.
VeracOS works by utilizing asymmetric cryptography and secure hash
computing algorithms.

VeracOS is, therefore, the first viable system and potential solution
to the global concerns of deepfake media, to automatically verify the
authenticity of media items against deepfakes by relying on existing
2
Fig. 1. VeracOS producer and consumer flowcharts.

and non-computationally intensive technologies and algorithms. Vera-
cOS does not rely on machine learning or computing-intensive methods
that are not fully accurate, does not require uploading of media items,
does not require user training, and does not require the introduction of
new media formats or standards.

The contribution of VeracOS is to provide an operating system
extension, which can produce files, and the ability to produce truly
verifiable files. VeracOS specifically uses media files as exemplary files.
Additionally, the VeracOS contribution is also to provide an operating
system extension or application with the ability to automatically verify
files, such as media files, and alert the user if the item is not authentic
and thus, potentially a fake item, such as a deepfake video. VeracOS
tackles the issue of deepfake media by, instead, focusing on providing
a novel ecosystem that provides authenticity verification for viewers
without requiring specialized hardware or hardware modifications,
application modifications, or sharing of files and their metadata. Ve-
racOS is the first operating systems extension to facilitate this novel
ecosystem. Additionally, VeracOS does not require new file formats as it
maintains backward compatibility, and shows negligible overhead, for
images and audio, and acceptable overhead for high-resolution videos.

A VeracOS prototype was implemented by modifying the Android
operating system. Media was created using the default unmodified
Android camera application and then viewed by the widely popular
and unmodified VLC media player (Videolabs, 2024) and the default
unmodified Android Gallery application. The rest of the paper is orga-
nized as follows: Section 2 discusses usage model, Section 3 discusses
threat model, Section 4 discusses related work, Section 5 discusses
background, Section 6 discusses architecture, Section 7 discusses im-
plementation, Section 8 discusses evaluation and results, and finally,
Section 9 discusses the conclusion and future work.

2. Usage model

VeracOS is designed to be simple to use and easily deployed. Vera-
cOS framework is efficient, scalable, and can be easily adopted in any
operating system. A media producer is any digital system that creates
media or contains a camera or microphone. A media producer can
produce images, video, or audio. These systems can be smartphones,
tablets, laptops, desktops, digital cameras, digital recorders, Internet of
Things devices, or even server farms that post-process media. A media
consumer is any system or device that views images or plays video
or audio. A producer may also be a consumer at the same time. An
author or creator of media can be an individual or it can be a group
of individuals sharing the same authorship, such as a corporation or
agency.

N. AlDuaij Computers & Security 157 (2025) 104565
Fig. 1 shows a flowchart for both the producer and consumer
when creating a file and viewing a file, respectively. Users of producer
systems need to run a VeracOS modified operating system and provide
an author or creator secret key that has to be unique based on identity
but does not have to be unique across multiple systems owned by the
same author or creator. For example, a company may use the same
secret key for all of its producer systems even if they use several
different systems to produce media. The secret key may be provided as
a file or through a Uniform Resource Locator (URL) link. This signature
is used to sign the produced media; signing can also be postponed as it
does not have to be performed immediately upon the creation of media.
The signature used has to be unique and private to the entity, whether
an individual or a company.

Users of consumer systems can either use the modified VeracOS
operating system or download an application. For example, if the user
is using a modified Android operating system that deploys VeracOS, the
user does not need to do anything to verify media. Any media viewed
will be automatically verified. If the media cannot be verified or was
never signed by VeracOS, an alert is provided to the user regarding
the currently viewed media. The user may ignore the alert. VeracOS
does not break backward compatibility or prevent the consumer from
viewing media regardless of its authenticity. If users are not running a
VeracOS operating system, a VeracOS application may be downloaded
and installed instead; this application does not require any operating
system modifications. However, the user must manually provide the
media to the application for verification purposes. In all cases of
VeracOS, the media or any metadata is never uploaded or shared with
any third party.

VeracOS uses a digital signature to verify authors and creators of
media content. As such, VeracOS producers use an author or creator
secret key to sign any media created. VeracOS consumer systems would
automatically use the known author or creator public key to verify the
authenticity of the signed media. The exact details of this algorithm
and how it is performed automatically on a creator basis rather than a
specific media item basis are discussed in detail in Section 6. Note that
for strictly offline systems, users may add the public keys of authors
and creators as individual files or through local URLs. Alternatively,
a database file with all known author ID and public key tuples may
also be provided as the entirety of the verification process can be fully
performed offline. Using VeracOS, existing applications do not need to
be modified.

3. Threat model

The threat model under VeracOS is concerned with the producer
and consumer components. For the producer, there are several threats
that exist. First, an adversary may intercept and modify image, audio,
or video frames before certification. This issue persists beyond VeracOS
and is not facilitated by VeracOS. Second, an adversary may gain access
to the author ID and key pair to produce their own fake media. VeracOS
assumes that the producer applies correct security measures to keep
their data safe and secure against such adversaries. For the consumer,
an adversary might intercept the verification process at the operating
system level by falsely reporting that the media has been verified.
To do so, the adversary must first compromise the operating system
itself. Finally, a malicious application might report fake notifications of
VeracOS verification. The consumer is urged to download trustworthy
applications and to verify that the notifications are reported by VeracOS
rather than applications.

4. Related work

Fact-checking against misinformation has been a focus of news
reporting. Various news agencies and corporations are combating mis-
information in their platforms (Meta, 2024a; CNN, 2024; Associated
3
Press, 2024). Part of combating misinformation is preventing or de-
tecting deepfake media. There is an ever-increasing interest in using
artificial intelligence tools to protect against and prevent malicious
behavior, such as cyber attacks (Babulak, 2023; Mohanraj and Bab-
ulak, 2019). Juefei-Xu et al. (2022) provides a survey study of over
three hundred studies and papers regarding deepfake generation and
detection. Juefei-Xu et al. (2022) overviews and considers the back-
and-forth battle between generation and detection. Deepfake detection
is not guaranteed with perfect accuracy (Barnaciak and Ross, 2022)
and newer deepfake generation techniques may still subvert newer
deepfake detection methods (Juefei-Xu et al., 2022).

Tracing or watermarking, similar to fingerprinting, research in me-
dia hides data in media by using neural networks or other artificial
intelligence methods but does not provide a fully accurate detection
method (Zhao et al., 2023; Guarnera et al., 2020). AMP (England
et al., 2021) relies on fragile watermarking and a consortium frame-
work for provenance but requires modifications to applications. Zheng
et al. (2020) relies on trusted cameras that can assign hashes to pro-
duced content. This method requires certifying every camera separately
even if it belongs to the same media creator. The objective of Zheng
et al. (2020) is to identify the source camera. This method is also
not fully accurate and might result in failed tamper detections. There
is also no clear information on how (Zheng et al., 2020) can handle
post-processed media files or streaming media.

VeracOS is not concerned with deepfake generation and does not
require detection. VeracOS aims to prevent deepfakes from infiltrating
social media or going viral by allowing users to automatically and easily
be able to verify the authenticity of media without sharing the media
or any metadata. Media creators or authors in VeracOS do not have
to handle different media items separately nor do they have to certify
every camera in their possession.

Instead of detecting deepfakes, some applications focus on media
provenance (Hao, 2018; Coalition for Content Provenance and Authen-
ticity, 2024). Truepic (Truepic, 2024) allows users to upload original
media to their platform to allow consumers to compare the received
media with what is available on Truepic. This requires users to share
their media with a third party and also requires that the producer
and consumer trust and use Truepic. Serelay (Serelay Limited, 2024)
also uses a similar method to Truepic but uses fingerprints instead.
Consumers of media also have to interact with Serelay to check their
media. Similarly, PROVER (Prover, 2024) uses unique hashes of user-
created videos allowing consumer users to verify the authenticity of
their videos. OriginalMy (OriginalMy, 2024) also allows users to certify
their media. All of these methods require the sharing of the original
media by the author or creator and require users to share what media
they are viewing to verify them. None of these methods work for offline
verification.

Gipp et al. (2016) and Costales et al. (2023) both use blockchain
to secure the authenticity of videos by making sure a record of the
original video is created and traced. Hasan and Salah (2019) cre-
ates a framework using blockchain and the InterPlanetary File System
(IPFS) (Protocol Labs, 2024) to track videos and trace them to their
source. Hasan and Salah (2019) requires using blockchain, IPFS, the
internet, and relies on a separate blockchain transaction for every
video. While the cost per transaction may be minimal, the amount of
videos circulating would cause a tremendous increase in the cost to
support this framework. This method requires the sharing of videos
from the consumer side when trying to verify unless they locally adopt
a blockchain system and IPFS.

Unlike VeracOS, all of these solutions either require sharing of
the media with a third party or require handling the media on a
per-item case. For example, (Truepic, 2024; Serelay Limited, 2024;
Prover, 2024) all trace individual media items which require the trust of
authors and creators and require the trust of users as they query their
media items, and thus leak information to those entities, such as the
exact media item consumers are viewing. VeracOS is not computation

N. AlDuaij Computers & Security 157 (2025) 104565
intensive, provides a scalable framework, and does not require sharing
of media, modifying or reviewing blockchain transactions, or violating
consumer privacy by sharing media metadata or the media itself.
Additionally, all of these methods cannot and are not equipped to be
able to verify live streaming of media such as video or audio.

Vronicle (Liu et al., 2022) focuses on video provenance but relies
on hardware-assisted trusted execution environments that may not be
available on systems. Vronicle certifies videos on a per-camera basis
using these hardware extensions and requires application modifica-
tions for the consumer. Due to the heavy computations in Vronicle,
its processing times are far inferior to VeracOS. Relevant research
focuses on securing hardware to ensure unmodified data from the
system (Saroiu and Wolman, 2010) but generally requires hardware
modifications. ProvCam (Liu et al., 2024) uses a secure camera module
approach but also requires hardware and device driver modifications.
TalkLock (Shahid and Roy, 2023) creates dynamic Quick-Response
(QR) codes for audio by generating meta-information from speech
signals in real-time. However, TalkLock only applies to audio and is
also not fully accurate.

Signature-based schemes such as Aletheia (danielquinn, 2024) use
cryptographic signatures, similar to VeracOS. Aletheia relies on the
Domain Name System and modifies the file format by modifying the
file header for videos and images. As such, Aletheia generally requires
application modifications. Other signature-based schemes focus on em-
bedding information in each and every frame (Baser et al., 2024; Chen
et al., 2020; Zhang et al., 2024). In addition to being computation-
ally intensive and requiring application modifications, some of these
systems are not fully accurate and do not envision a framework that
combats deepfake media for the masses. For example, SecureSpec-
tra (Baser et al., 2024) adds an inaudible high-frequency signature to
audio to be verified and also requires a training phase. In all cases,
these systems do not clearly address the accuracy issues stemming from
widely used compression formats.

Hashing videos have been used in Singh (2021) to assign hashes
to unencrypted or encrypted frames to identify videos that are being
illegally shared. Singh (2021) shows that video hashing is a scal-
able and efficient method to identify matches without knowing the
underlying content of the video. Providing software with hashes is
a well-known method for providing downloadable software such as
applications or operating systems (Canonical Limited, 2024). Hashing is
not only performed and provided to users to verify if the download is
corrupted but to also verify that they were not maliciously tampered
with (Avast Software, 2024). For every piece of software or file, a
unique hash is provided for the user to verify and compare to what is
available on the respective website. VeracOS does not require creating
or sharing hashes for every media item and does not require users to
separately verify hashes for each media item.

A popular method used for ensuring authenticity of E-mails is the
Pretty Good Privacy (PGP) (Broadcom Inc., 2024) encryption standard.
PGP provides a way for users to sign their E-mails or files as a way
to ensure their authenticity when sharing them by encryption. PGP
is generally used in E-mails but is seldom used by users due to its
complexity and inconvenience (Koh et al., 2019)

Some platforms such as the Android Play Store (Google LLC, 2024l)
and Microsoft Windows (Microsoft Corporation, 2024b) require the
signing of applications or device drivers with a certificate. These sig-
natures or certifications are verified before installation and the user is
informed if there is no valid signature to deter them from installing
from unknown or unverified sources. This method is used to verify
individual software releases and is heavily tied to certain ecosystems.

VeracOS’s goal is to provide a scalable and easily deployed frame-
work that media producers and media consumers can easily use to
create verifiable media and to verify media. VeracOS does not require
separate signatures for each media item, does not share the actual
media, does not expose what the consumer is viewing to third parties,
and does not require application modifications. VeracOS allows any
entity to easily and automatically verify the original producer of the
media.
4
Fig. 2. General structure of a JPEG file.

5. Background

VeracOS framework modifies the operating system and media files
produced. First, a brief overview of media files is given. Second, an
overview of Android is given.

5.1. Media files

There are a plethora of media formats currently available and
supported by many systems. VeracOS is designed for all files and aims
to be applicable to all files. As an exemplary system, VeracOS uses
media files, specifically the most popular media formats produced for
video, audio, and images: The most common video format is the MPEG-
4 (MP4) format, the most common audio format for recording is the
MPEG Audio Layer III (MP3), the most common image format is the
Joint Photographic Experts Group (JPEG or JPG).

The majority of media formats are organized and structured simi-
larly (Schoning et al., 2017). Generally, the first part of a file includes
the header which contains information about the file, format, size, and
additional metadata. The second part of the file includes the image data
in case of images or frames in case of audio and video. Some formats
also include a header for every frame. Media viewers and players can
deduce the size of the image or the size of each frame from either the
metadata or from previous frames. Thus, media viewers and players can
deduce the exact size of the media file and readable data from headers.
Fig. 2 shows the general structure of a JPEG file as an example, with the
header and the metadata first, followed by the image data, compressed
data, and then an end of file, end of image, marker.

In terms of streaming audio or video, the structure is different since
the size of the streamed media is not always predetermined. As such,
any streamed formats usually contain an initial header or metadata file
followed by a stream of frames. In some cases, every frame includes a
header or metadata (Boris Asadanin, 2018).

5.2. Android

VeracOS uses Android as an exemplary operating system for several
reasons. First, unlike traditional operating systems which are more
straightforward in terms of a VeracOS implementation, mobile oper-
ating systems are highly vertically integrated which presents a more
interesting challenge for supporting VeracOS (AlDuaij et al., 2019).

N. AlDuaij Computers & Security 157 (2025) 104565
Fig. 3. Android architecture.

Second, mobile systems usually include embedded cameras and micro-
phones, enabling users to easily produce and share media. Third, there
are more smartphone and tablet users in the world than traditional
operating systems or desktop and laptop users (Kepios Pte. Ltd., 2024).
Note that any VeracOS modifications to Android can be repurposed for
general operating systems as well.

Fig. 3 shows the Android architecture. On top of the stack are user
and system applications. These applications communicate or call into
the operating system through a layer of API frameworks and libraries.
To communicate with hardware devices, Android offers a Hardware
Abstraction Layer (HAL) for the API and libraries. This layer abstracts
higher-level API from the details and intricacies of hardware. The HAL
layer communicates directly through the kernel to hardware device
drivers such as the storage or camera device driver. The device driver
itself communicates with the hardware.

VeracOS is specifically concerned with the storage, camera, and
microphone devices that enable the creation of videos and audio.
Applications use common and public Android APIs to take images or
record video and audio (Google LLC, 2024c). Similarly in other general
operating systems, an API is used by applications to communicate with
camera or microphone hardware (Microsoft Corporation, 2024a; Linux
Kernel Organization, Inc., 2024; Apple Inc., 2024a). Through common
and public APIs, applications can either request raw frames directly to
package them in a media-formatted file or request the operating system
directly create the media file based on the media taken or recorded.

Android Applications share and access media files through a media
store abstraction (Google LLC, 2024k). By using a content provider
(Google LLC, 2024d) and a content resolver (Google LLC, 2024e),
as shown in Fig. 4, applications can store media and retrieve media
for viewing. iOS provides a similar framework with a media store
accessible through similar APIs (Apple Inc., 2024c,b,d). In some cases,
applications do not want to store their media in a shared media storage
to avoid exposing their files to other applications due to privacy.
For those applications, there are APIs to store these files directly in
application-specific storage (Google LLC, 2024f).

6. Architecture

VeracOS involves three major components, as shown in Fig. 5.
First, the novel VeracOS algorithm that adds or checks the verification
5
Fig. 4. Android content provider and resolver.

Fig. 5. VeracOS architecture.

component to the media. Second, the media producer that produces any
media and thus utilizes the VeracOS algorithm for adding verification
to the media. Third, the media consumer that consumes or views any
media. These three components are integrated to address the following
key challenges: (a) Providing a true verification component to media,
(b) Allowing true verification of any media, (c) Creating a portable
and adaptable framework that can be easily deployed on any system.
This includes an efficient, secure, and privacy-friendly implementation
that does not require special hardware or intensive and costly com-
putations, (d) Maintaining backward compatibility. This section uses
the most common media files and Android as an exemplary system
for VeracOS. First, the operating system modifications and reasoning
are discussed for producers. Second, operating system modifications
and reasoning are discussed for consumers. Third, the novel algorithm
used for VeracOS is listed and discussed along with its mathematical
description. Fourth, special cases such as traditional operating systems
and streaming are also discussed along with VeracOS limitations.

6.1. Media producers

Given the background of media files and operating systems, there
are multiple ways to intercept produced or created media and add
the verification component. One way to attempt this is to modify the
storage, camera, and microphone hardware and include it as part of
the firmware. This method requires all storage, camera, and micro-
phone manufacturers to include an implementation of VeracOS. First,
this makes VeracOS almost infeasible to support given the number of
existing manufacturers and the requirement that they have to adopt
and adhere to a new standard. Second, this might break compatibility

N. AlDuaij Computers & Security 157 (2025) 104565
in certain cases such as live streaming. Third, even if manufacturers
adopt these changes, the operating systems must be modified to adjust
to these updates. Similarly, implementing VeracOS via the HAL layer
would require the use of lower-level functionality and no access to
higher-level APIs that would be useful and efficient for VeracOS.

Alternatively, on the other end of the spectrum, VeracOS media pro-
ducers can be implemented with a user application instead. However,
this hinders usage as it restricts users wanting to verify media to a single
application. Users relying on different applications to create media will
need to eventually export their media to the VeracOS application for
processing. If VeracOS provides an API instead, all existing applications
used by media producers need to be updated with VeracOS. More
importantly, the unique and private author or creator signature would
be exposed to these third-party applications, creating a massive privacy
and security risk of leaking keys. VeracOS goal is to provide a secure
and efficient system for a media producer that can automatically verify
all created media, regardless of which application is being used to
create the media.

As such, VeracOS takes a unique approach by intercepting at the
operating system framework layer. VeracOS intercepts the API used
after taking images, recording audio, and recording video. Specifically,
VeracOS intercepts the MediaProvider (Google LLC, 2024j) module and
API after the file creation stage of the media data. First, by intercepting
at this layer, the hardware is already decoupled from the media.
VeracOS would therefore work on any operating system regardless
of the manufacturer or model of the storage, camera, or microphone
and their device drivers. Second, at this stage, any post-processing of
media frames or data would be complete. Post-processing of media
is common and it is crucial that VeracOS intercepts only after the
final media is created. Third, VeracOS would work regardless of the
application that creates the media and so applications need not be
updated. Fourth, backward compatibility is maintained with unsigned
or unverified media. Fifth, signing or verifying the media happens at
the last stage of media creation, allowing VeracOS to simply append the
verification component without breaking compatibility nor requiring
intensive computations or the use of the cloud.

In the case of live-streaming media, since there is no predetermined
file size, the verification component is handled on a per-frame basis
instead of at the end of a media file, and thus changes would be
required for the camera or microphone APIs that provide frames.

Traditional operating systems like Linux and Windows do not have
a similar framework to mobile operating systems for accessing media
storage. File system or storage access on traditional operating systems
is straightforward. To provide certification of media on these operating
systems, a simple daemon can be provided to scan for media files added
to the system. Once discovered, the verification component may be
added depending on user preferences. More specifically, this daemon
can focus on generic media directories in a user directory such as
Pictures and Videos.

Media producer systems only require an author or creator signature
or key to be added to an operating system. VeracOS provides a Settings
menu item to provide the signature or key through a file or a URL link.
This signature or key is then used by the operating system to add the
verification component to every created media file. The Setting menu
item for VeracOS also allows the user to specify whether to always
certify media automatically on a per-application basis or to always
ask the user via an actionable notification. Note that VeracOS does
not certify downloaded media generally added to the downloads folder
given their different source of origin.

6.2. Media consumers

Similar to the case of media producers, there are multiple ways to
intercept consumed or viewed media and verify the media. To verify all
media being viewed, even through existing unmodified applications,
the operating system needs to be modified to automatically check
6
these media files. Without modifying the operating system, any media
file can be viewed by a third-party application without triggering the
verification check. VeracOS intercepts at the framework layer with sim-
ilar reasoning to media producer interception at the framework layer.
Specifically, VeracOS intercepts the APIs for playing media (Google
LLC, 2024i,h,b). In some cases, applications might create their own
media player without relying on the standard operating system me-
dia player API. For this case, VeracOS also intercepts the content
resolver (Google LLC, 2024e) API which lets applications query media
files for their data before playing them. Unless the application is
accessing private files, applications use this API to access available and
non-private media files (Google LLC, 2024f).

Given this, VeracOS does not impose its certification or verification
on files that applications would like to keep private in their own private
or temporary directories. A more aggressive and less privacy-friendly
form of VeracOS could intercept the kernel open or read functions or
the Java File class to monitor every single access to any file on the
system. For traditional operating systems, this method may be used in
addition to intercepting platform media playing APIs. In the case of live
streaming media, VeracOS can intercept the media playing, decoding,
or viewing APIs for raw or encoded frames.

VeracOS operating system can access an online database of author
or creator signatures or keys. Alternatively, users may provide a link to
or a file of author signatures or keys. Verifying the signature requires
simple computations and a single check to authenticate that the media
provided is the original author-created media. For users that do not
have the VeracOS operating system extension, an application to verify
the media is provided. This VeracOS application can be compiled to
run on any operating system. However, this requires users to manually
verify their media by providing it to this application.

6.3. VeracOS algorithm

To support verifying media, VeracOS computes the hash value of the
entire media item and then encrypts the hash value with the author or
creator signature, a secret encryption key as part of an asymmetric key
pair. This value, along with a unique author ID, is then appended to the
media item, without the modification of the media format while still
maintaining backward compatibility with viewers and players of the
media item. For users receiving the media item, the item authenticity
can be easily verified by getting the author or creator public decryption
key from the author ID to decrypt the hash value of the given item
and comparing it with the actual media item hash value. This means
that the author or creator of the media item is the only entity that can
encrypt the hash value. This hash value represents the exact media item
created by the author. Anyone or any system can decrypt this hash
value and compare it to the received media item’s locally computed
hash value, which is appended to the end of the media file. The only
information required from the consumer would be a tuple of author ID
and key. Encrypting the hash value ensures that the media item was
signed only by the author and if the decrypted hash value matches the
calculated hash for the file, it ensures that the file was not modified
since certifying it.

If a malicious entity modifies the hash value to match a modified
media item, the malicious entity will not be able to encrypt the hash
value with the author’s secret encryption key. Any hash value appended
to the media item by the malicious entity will not decrypt to the true
hash value of the media item. If a malicious entity tries to only modify
the media item instead, the hash values will not be equivalent. If the
author ID is modified along with the media and encrypted hash, the
user will know that the verification is based on a different author. This
allows media consumers to easily verify media without leaking any
information on what media they are viewing nor requiring the use of
third-party applications or tools. Media consumers can also easily verify
media even when they are offline.

N. AlDuaij Computers & Security 157 (2025) 104565
Media producers can share their author or creator signature and
media consumers can add these signatures or keys to verify their
media. A database of keys from known authors or creators of media
can be provided with VeracOS as a file. Alternatively, VeracOS also
allows providing these keys via an online link. VeracOS envisions a
trusted authority to provide all of the author or creator verified keys
through online servers, in a system or framework similar to certificate
authorities (Michael Labos, 2024) such as the ones used for websites.

Algorithm 1 VeracOS algorithm for producers
1: function AddVerification(𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
2: if fileType(𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ) ∉ 𝑚𝑒𝑑𝑖𝑎𝑇 𝑦𝑝𝑒𝑠 then return
3: end if
4: 𝑎𝑢𝑡ℎ𝑜𝑟𝐼𝐷 ←GetAuthorID()
5: 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑦 ←GetAuthorEncryptKey(𝑎𝑢𝑡ℎ𝑜𝑟𝐼𝐷)
6: 𝑐𝑎𝑙𝑐𝐻𝑎𝑠ℎ ←CalculateHash(𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
7: 𝑒𝑛𝑐𝐻𝑎𝑠ℎ ←EncryptHash(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑦, 𝑐𝑎𝑙𝑐𝐻𝑎𝑠ℎ)
8: AppendAuthorID(𝑎𝑢𝑡ℎ𝑜𝑟𝐼𝐷, 𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
9: AppendEncryptedHash(𝑒𝑛𝑐𝐻𝑎𝑠ℎ, 𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
10: NotifyUserOptional(𝑚𝑒𝑑𝑖𝑎𝐶𝑒𝑟𝑡𝑖𝑓 𝑖𝑒𝑑)
11: end function

Fig. 6 shows the general flow of the producer and consumer. The
novel algorithm for producers is listed in Algorithm 1 and shows the
process of creating a verification component. First, the file type for
the file is checked against a list of VeracOS media file types. Note
that VeracOS does not preclude other file types; it simply focuses on
media as exemplary file types. Second, the author ID and the unique
secret encryption key are retrieved from VeracOS. Third, the hash for
the file is calculated. Fourth, the hash is then encrypted. Fifth, the
file is then appended with the author ID in cleartext and then the
encrypted hash. Note that the author ID is unique per author and
may be reused in multiple systems and producers. The author ID must
remain a secret and only accessible by authorized entities. Finally, an
optional notification is sent to the user regarding the certification of
the media file.

Algorithm 2 VeracOS algorithm for consumers
1: function VerifyFile(𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
2: if fileType(𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ) ∉ 𝑚𝑒𝑑𝑖𝑎𝑇 𝑦𝑝𝑒𝑠 then return
3: end if
4: 𝑎𝑢𝑡ℎ𝑜𝑟𝐼𝐷 ←GetAuthorID(𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
5: 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑦 ←GetDecryptionKey(𝑎𝑢𝑡ℎ𝑜𝑟𝐼𝐷)
6: 𝑒𝑛𝑐𝐻𝑎𝑠ℎ ←GetEncryptedHash(𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
7: 𝑑𝑒𝑐𝐻𝑎𝑠ℎ ←DecryptHash(𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑦, 𝑒𝑛𝑐𝐻𝑎𝑠ℎ)
8: 𝑐𝑎𝑙𝑐𝐻𝑎𝑠ℎ ←CalculateHash(𝑓𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
9: if 𝑐𝑎𝑙𝑐𝐻𝑎𝑠ℎ == 𝑑𝑒𝑐𝐻𝑎𝑠ℎ then
10: NotifyUser(𝑣𝑒𝑟𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑃𝑎𝑠𝑠𝑒𝑑)
11: else
12: NotifyUser(𝑣𝑒𝑟𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑖𝑙𝑒𝑑)
13: end if
14: end function

The novel algorithm for consumers is listed in Algorithm 2 and
shows the process to verify a component. First, the file type for the file
is checked against a list of VeracOS media file types. Note, again, that
VeracOS does not preclude other file types; it simply focuses on media
as exemplary file types. Second, the author ID is retrieved and verified
by retrieving the respective public decryption key. This decryption key
is tied to a single author ID and can be retrieved locally, through a
link, or via authorized and trusted servers. Third, the encrypted hash
is retrieved directly from the file. Fourth, the hash is then decrypted.
Fifth, the hash of the file is calculated. Note that VeracOS calculates
the hash of the original file, without the appended author ID and
encrypted hash. Finally, the hash from the file and the calculated hash
are compared. If the hashes are equal, the media is verified to be
7
Fig. 6. VeracOS producer and consumer algorithm flow.

produced by the author without being tampered with. If the hashes are
not equal, the media is either never signed by VeracOS or not verified
as truly produced by the given author.

These algorithms can also be applied on a per-frame basis in the
case of live streaming. Note that the VeracOS algorithm can also be
expanded and used for any file type as the core functionalities can be
applied to any file. VeracOS simply focuses on media as exemplary file
types.

6.4. VeracOS mathematical description

To improve clarity and rigor in the cryptographic operations of
VeracOS, the following subsections present a formal description of the
core mechanisms used in file certification and verification. The goal
is to mathematically define the behavior of the VeracOS producer and
consumer algorithms, particularly their use of cryptographic primitives.

Notation
Let the following denote the key elements used throughout the

system:

• Let 𝑚 ∈ {0, 1}∗ denote the full content of a media file.
• Let 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛 be a cryptographic hash function
(e.g., RSA-2048), where 𝑛 is the hash output size.

• Let sk𝐴 be the private signing key of an author 𝐴, and pk𝐴 be the
corresponding public verification key.

• Let 𝜎 ∈ {0, 1}∗ denote the digital signature produced by the
author.

Certification (producer side)
Given a media file 𝑚, the certification procedure executed by the

VeracOS producer is:

1. Compute the hash of the media:
ℎ = 𝐻(𝑚)

2. Sign the hash using the author’s private key:
𝜎 = Signsk𝐴 (ℎ)

3. Append the tuple (id𝐴, 𝜎) to the end of the file, where id𝐴 is a
unique identifier for the author.

This results in the augmented media file:
𝑚′ = 𝑚 ‖ id𝐴 ‖ 𝜎

Verification (consumer side)
Given a received media file 𝑚′, the consumer performs the follow-

ing:

1. Parse 𝑚′ to extract 𝑚, id𝐴, and 𝜎.
2. Retrieve pk𝐴 using id𝐴.
3. Compute ℎ′ = 𝐻(𝑚).

N. AlDuaij Computers & Security 157 (2025) 104565
4. Verify the signature:

Verifypk𝐴 (ℎ
′, 𝜎)

?
= true

If the signature is valid, then 𝑚 is guaranteed to have originated
from the author 𝐴 and has not been modified.

Security guarantees
This scheme satisfies the following security properties under stan-

dard cryptographic assumptions:

• Authenticity: Only an entity with sk𝐴 can produce a valid 𝜎 for
a given 𝑚.

• Integrity: Any modification to 𝑚 will result in 𝐻(𝑚) ≠ ℎ′,
invalidating the verification.

• Non-repudiation: The signature 𝜎 binds 𝐴 to the content of 𝑚,
assuming secure key management.

This formalization captures the essence of the cryptographic opera-
tions in VeracOS.

6.5. Cross-operating system feasibility

Modern mobile operating systems are designed similarly, with a tall
interface to devices via multiple layers of software (Andrus et al., 2014;
AlDuaij et al., 2019). iOS provides the Photo capture, PhotoKit, and
Media Player APIs to allow applications to create and access media, and
to view shared storage and their files. Intercepting these APIs allows for
adding the producer and consumer components to modify and verify
media. Modern traditional operating systems, such as Apple macOS and
Microsoft Windows, generally allow automated indexing of files on a
system. These indexers and the operating system camera capture APIs
can be intercepted to add the producer and verification component. The
media player APIs can be intercepted by the consumer component to
verify the media being viewed.

6.6. VeracOS limitations

Deepfake Media Signed By A Trusted Producer: VeracOS verifies
that media truly originated from a trusted producer. VeracOS does not
prevent deepfake media from being created. For example, if a trusted
producer, such as a news agency, decides to create their own deepfake
media and disseminate this media, it will be successfully verified by
VeracOS. The goal of VeracOS is to prevent deepfake media from being
disseminated by unaffiliated producers. It is up to users to trust this
producer, such as a news agency, with the actual media. However,
VeracOS can be modified in the future to also include deepfake media
detection methods to identify deepfake media from a trusted producer.
This producer can then be flagged as a potentially untrustworthy
producer.

Private Application Files: In order for VeracOS not to break the
privacy model introduced in Android and various operating systems,
such as iOS, VeracOS accesses and modifies files that are provided
outside of the private internal storage of applications. Applications may
be modified to share those files or use VeracOS code. Alternatively,
users may export their files to a VeracOS application or shared media
storage. As future work, VeracOS may create an API that includes a
static or dynamic option for applications to allow VeracOS to access
their private storage.

Legacy Systems and Their Applications: Media modified and
produced by VeracOS is still viewable properly on legacy systems and
their applications. However, due to these legacy systems not including
the VeracOS modifications, the verification process will clearly not be
available. As an alternative for users who do not have access to the
VeracOS extension, a VeracOS-based application can be used to verify
any media provided to it via shareable storage or exported by the
consumer from different applications.
8
Malicious Operating System: A malicious user may share a hacked
version of the VeracOS framework to trick users into using a false
VeracOS system. To subvert this, VeracOS can offer a trustworthy server
to share valid VeracOS components or operating system with correct
hashes as is done by many existing operating systems. Additionally,
VeracOS does not introduce additional security features beyond what
is offered by existing operating systems to prevent root access and
modification of the framework or the kernel. Formal verification of
VeracOS may be useful in this case.

7. Implementation

VeracOS implements the producer component in the MediaProvider
module that is part of the Android Open Source Project (AOSP) op-
erating system. VeracOS intercepts the scanFile functions since these
functions are called when a new media item is to be discovered.
VeracOS implements the consumer component in the ContentResolver
API, by intercepting the query functions, the MediaPlayer API, by in-
tercepting the setDataSource and prepare functions, the MediaExtractor
API, by intercepting the setDataSource function, and the BitmapFactory
API, by intercepting the decodeFile functions. These are the functions
used to access these media files.

In all cases, VeracOS verifies the file type before proceeding to
ensure that the file is a media file by checking the extension. A more
sophisticated method may look at the file header instead. VeracOS
utilizes the MessageDigest API along with the SHA-256 secure cryp-
tographic hash function. For asymmetric key generation, encryption,
and decryption, RSA-2048 is used. Notifications and intents, in the case
of the producer, are used to notify the user of any certifications or
verifications. The Settings package or application is also modified to add
VeracOS options.

Keys are provided through local files or downloaded via URLConnec-
tion API and generally stored in local storage. Alternatively, the Android
Keystore system or the KeyChain API may be used.

8. Evaluation

For evaluation, examples of VeracOS certifying and verifying media
are shown, benchmark tests were run, and timing analysis was per-
formed. The Google Pixel 6a (bluejay, Google Tensor Octa-core, 6GB
RAM, 128GB storage) was used. VeracOS is implemented using the
Android Open Source Project (Google LLC, 2024a) version 14, release
UQ1 A.240205.002.

8.1. VeracOS producer and consumer examples

Fig. 7 shows a screenshot of a notification after recording a video
with the camera. The three actions are interactive via notification. Fig.
8 shows a screenshot taken when viewing a video through a popular
and widely used media player, VLC media player (Videolabs, 2024)
without modifying it for VeracOS. Note that the notification informs
the user of the verification result which, in this case, has passed the
verification. Finally, Fig. 9 shows a screenshot taken after viewing an
image with the default Android Gallery application. The image being
viewed was modified before viewing by flipping a single bit in the
image file from a zero to a one, without certifying it again. The bit was
not part of the header nor the verification component as it is in the
middle of the file, representing image data. This shows, that due to the
properties of secure cryptographic hash functions, a simple bit change
causes a different hash component that cannot match the original hash
of the file therefore resulting in a failed verification. All notifications
appear when initially viewing the media and a failed verification does
not prevent the user from viewing the media.

N. AlDuaij Computers & Security 157 (2025) 104565
Fig. 7. VeracOS producer or certification notification.

Fig. 8. VeracOS consumer passed verification notification.
9
Fig. 9. VeracOS consumer failed verification notification.

Table 1
Producer timing breakdown.
 Subcomponent Image Audio Video Video
 File type JPEG MP4 MP4 MP4
 File size (MB) 1.16 1.22 109.60 490.40
 Resolution/Sample rate 3024 × 4032 44.1 KHz 2160 × 3840 2160 × 3840
 Duration (s) – 60 10 60
 Calculate hash (ms) 30.2 34.0 1958.6 8507.4
 Encrypt hash (ms) 5.6 5.0 4.8 6.4
 Append hash to file (ms) 0.8 0.8 0.8 0.7
 Notify user (ms) 1 1 1 1
 Total (ms) 37.6 40.8 1965.2 8515.5

8.2. Timing analysis

VeracOS was instrumented to measure the time spent in each com-
ponent, producer and consumer, as well as their subcomponents. For
each component, a media file was either produced or consumed. This
process was repeated five times and the average of all timings in
milliseconds (ms) was taken.

For the producer, an image was taken five times averaging 1.16
Megabytes (MB) per file, a one-minute audio (44.1 KHz) was recorded
five times averaging 1.22 MB, a ten-second high-definition (4K,
2160 × 3840) video was recorded averaging 109.60 MB, and a one-
minute high-definition (4K, 2160 × 3840) video was recorded aver-
aging 490.40 MB. The subcomponents of the producer or verification
process include calculating the hash for the file, encrypting the hash,
and appending the author ID and hash to the file.

Table 1 shows the time spent by the producer, with respect to time
spent certifying media and creating the verification component. The
difference in average timings is directly related to the file size, not
the file content or type. Images and audio perform similarly since they
average similar file sizes. Table 1 also shows the average timings for

N. AlDuaij Computers & Security 157 (2025) 104565
Table 2
Consumer timing breakdown.
 Subcomponent Image Audio Video Video
 File type JPEG MP4 MP4 MP4
 File size (MB) 1.15 1.21 107.30 520.51
 Resolution/Sample rate 3024 × 4032 44.1 KHz 2160 × 3840 2160 × 3840
 Duration (s) – 60 10 60
 Extract author ID/hash (ms) 2.6 1.9 2.7 1.5
 Decrypt hash (ms) 11.2 10.1 10.3 10.5
 Calculate hash (ms) 33.4 32.7 2723.0 13,751.5
 Hash comparison (ms) 0 0 0 0
 Notify user (ms) 10.4 8.3 7.3 9.9
 Total (ms) 57.6 53.0 2743.3 13,773.4

videos around 110 MB in size and around 490 MB in size. The majority
of the time is spent calculating the hash which includes opening the
file, reading the file, and updating the hash with the buffer data. As
such, the timing is directly related to the size of the file. For 1 MB
files, the average time spent is around 39 ms. For 110 MB files, the
average time spent is around 2000 ms. For 490 MB files, the average
time spent is around 8515 ms. Note that during this time, the user
is not blocked and may proceed to view the media as they await the
notification. Encrypting the hash is almost fixed around 5 ms since the
hash produced and encrypted is the same size regardless of the file size.
Finally, appending the hash to the file and notifying the user measures
a maximum average of around 1 ms.

For the consumer, the same media produced and created by the pro-
ducer are viewed five times and the averages of timings are taken. The
subcomponents of the consumer or viewing process includes extracting
the author ID and the saved encrypted hash from the end of the file,
decrypting the hash, calculating the hash of the file itself without the
VeracOS verification component, comparing hashes, and notifying the
user.

Table 2 shows the time spent by the consumer, with respect to time
spent verifying media. Similar to the producer, the timings are directly
related to the file size and not the file content or type. Images and
audio perform similarly since they average the same file size. Extracting
the author ID and hash takes on average 1.5–2.7 ms for all cases.
Decrypting averages around 10.1–11.2 ms. The majority of the time
is spent calculating the actual hash of the file. For around 1.2 MB
of images or audio, it took around 53–58 ms. For around 110 MB of
video, it took around 2743 ms. For around 521 MB of video, it took
around 13773 ms. Comparing the hashes takes less than 1 ms. Notifying
the user takes on average 7–11 ms, due to the actions added to the
notification. The majority of the time is spent calculating the hash
which includes opening the file, reading the file, and updating the hash
with the buffer data.

Note that key creation, which occurs only when a user creates an
author ID for a producer, takes an average of 265 ms. Loading keys
from a file instead of memory takes an average of 4 ms.

From Table 1, the average producer throughput for the 1 MB files is
30.4 MB/s and the average producer throughput for the larger, 110 MB
and 490 MB, files is 56.7 MB/s. From Table 2, the average consumer
throughput for the 1 MB files is 21.4 MB/s and the average consumer
throughput for the larger, 110 MB and 521 MB, files is 38.5 MB/s.
Inversely, the processing time of the producer for the 1 MB files is
32.9 ms/MB and for the larger files it is 17.6 ms/MB. The processing
time of the consumer for the 1 MB files is 46.9 ms/MB and for the larger
files it is 26.0 ms/MB.

The majority of time shown for VeracOS is spent calculating hashes
as it requires reading and processing an entire file. Faster algorithms
as well as efficient third-party native libraries may be used instead.
Additionally, more recent systems provide significantly better perfor-
mance than the Google Pixel 6a in terms of disk, CPU, and memory
tests (PassMark Software, 2025). Regardless of the system being used,
the delay in certification or verification is tolerable since users are not
blocked and are not prevented from producing or viewing media during
that time.
10
Fig. 10. PassMark Benchmarks (higher is better).

8.3. Performance measurements

For evaluating VeracOS performance, the widely used Android
PassMark benchmark (PassMark Software, 2024) application was used
which contains a set of resource-intensive tests to evaluate CPU, mem-
ory, I/O, and graphics performance. PassMark was run in three different
configurations: First, it was run using idle vanilla AOSP without any
VeracOS changes. Second, it was run with VeracOS idle. Third, it was
run with VeracOS fully active. Given that VeracOS certification or
verification takes mere seconds or less and the PassMark test takes over
four minutes, a more representative test would ensure that VeracOS is
active for the entire duration of the test. To simulate the worst-case per-
formance as a stress test, two threads were spawned and run during the
PassMark test. The first thread continuously calculates the hash from
a sixty-second video file it reads and the second thread continuously
encrypts and then decrypts a hash value. The hash algorithm used is
SHA-256 and the encryption algorithm used is RSA-2048 as mentioned
in Section 7. PassMark was run five times for each configuration, and
the results were averaged across each configuration.

Fig. 10 shows the test results from running the PassMark benchmark
tests. All results are normalized to the vanilla AOSP case, higher results
are better. The difference in results between vanilla AOSP and VeracOS
idle is negligible. The difference between vanilla AOSP and VeracOS
active, is very slight. There is almost no difference in terms of disk and
3D tests. There is a slight difference in terms of CPU, memory, and
2D tests as the VeracOS active case performs computations that stress
the CPU versus idle vanilla AOSP. Even in the unrealistic worst case
of VeracOS actively and continuously performing file certification and
verification tasks, the performance of VeracOS is good.

8.4. VeracOS versus other solutions

Table 3 shows a comparison of VeracOS with other solutions related
to the prevention or detection of deepfake material. Table 3 lists the
restrictions to compare against other solutions. The first restriction
lists whether the solution provided is on a per-camera basis rather
than being applied universally across systems. The second and third
restrictions list whether the solution requires hardware modifications
or application modifications. The fourth restriction lists whether the
solution requires the sharing of the file or metadata to certify or
verify the file. Finally, the performance is listed depending on what
is available.

A few solutions are used on a per-camera basis rather than on a
per-producer basis. As such, a producer would need to ensure that
all cameras in their possession contain the required modifications.
Most of these solutions require hardware modifications. The vast ma-
jority of solutions require application support to work, this could be
a standalone application or it could be in the form of application

N. AlDuaij Computers & Security 157 (2025) 104565
Table 3
Comparison of VeracOS with other solutions.
 Solutions \ Restrictions Per-camera H/W Mod. Application Mod. Shares files Performance
 VeracOS 8.5–13.8 s/60 s video (2160 × 3840)
 Vronicle (Liu et al., 2022) ✓ ✓ 4 s/30 frames (1280 × 720)
 (Zhao et al., 2023; Guarnera et al., 2020) ✓ Only detection
 AMP (England et al., 2021) ✓ ✓ 80–248 ms latency
 (Zheng et al., 2020) ✓ ✓ Only images
 Truepic (Truepic, 2024) ✓ ✓ Cloud
 Serelay (Serelay Limited, 2024) ✓ ✓ Cloud
 PROVER (Prover, 2024) ✓ ✓ Cloud
 OriginalMy (OriginalMy, 2024) ✓ ✓ Cloud
 (Gipp et al., 2016; Costales et al., 2023; Hasan and Salah, 2019) ✓ ✓ Blockchain transaction/video
 ProvCam (Liu et al., 2024) ✓ ✓ 0.12 s Camera stop latency
 Aletheia (danielquinn, 2024) ✓ N/A
 TalkLock (Shahid and Roy, 2023; Baser et al., 2024) ✓ Only audio
modifications. For example, Aletheia modifies the file format header,
requiring applications to adjust to these format changes. Many solutions
also require the sharing of the actual file or its metadata with third
parties, creating a privacy risk. Finally, the performance is listed for
each solution. For some solutions, the majority of the task is performed
on the cloud. Two solutions are either strictly audio or images. The
blockchain solutions require a blockchain transaction per video. The
watermark or fingerprinting solutions are generally used only for detec-
tion. The performance of VeracOS is far superior to Vronicle, however,
it does not compare favorably to ProvCam as ProvCam is a per-camera
basis solution that requires hardware and device driver modifications.

VeracOS provides a solution that does not require hardware or ap-
plication modifications. VeracOS does not require sharing of the files or
any of its metadata and can be used in a per-camera based or as large as
a per-organization granularity to represent all the videos from an entity.
The performance for images and audio is shown to be acceptable. For
videos, VeracOS shows overhead that is non-blocking and would not
hinder the user experience. Furthermore, VeracOS provides flexibility
to be extended to various file types and not only media files.

9. Conclusion and future work

VeracOS is an operating system extension created for combating
misinformation and exploitation of fake files by certifying and verifying
them. VeracOS modifies Android and creates a novel algorithm to
allow certification of files and verification of files, using media files as
exemplary files. Certifying created media and verifying viewed media
is automatic. Unlike existing solutions and methods, VeracOS requires
no specialized hardware, application modifications, sharing of private
data, or a learning curve from a user. VeracOS is the first viable
system to provide this unique and novel algorithm for file certification
and verification by relying on leveraging existing features and APIs in
operating systems. VeracOS intercepts APIs and allows for certification
and verification of files, specifically media, without requiring applica-
tion modifications or specialized hardware. VeracOS is also an easily
portable system that can be easily deployed and utilized in various
operating systems, including mobile operating systems, Internet of
Things devices, and embedded devices. A VeracOS prototype was built
using Android and tested to show that VeracOS operates automatically,
works on existing and less powerful hardware such as smartphones,
and performs well even in extreme cases. Part of the testing included
using the default Android camera application to create media and using
the widely popular VLC application and the default Android Gallery
application to view media. For future work, deploying VeracOS to
other systems, other files, intercepting via kernel functions, and live
streaming could be implemented. Dealing with special cases such as
when some applications further compress media files to reduce the size
of files should be addressed. Additionally, using an overlay network
to hide and mask user queries of author IDs would be beneficial for
increased privacy.
11
Declaration of competing interest

The author declares that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The author would like to thank Kuwait University and its College of
Science for their support and facilities.

Data availability

No data was used for the research described in the article.

References

AlDuaij, N., Van’t Hof, A., Nieh, J., 2019. Heterogeneous multi-mobile computing.
In: Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services. MobiSys 2019, Association for Computing Machinery,
New York, NY, USA, pp. 494–507.

Andrus, J., Van’t Hof, A., AlDuaij, N., Dall, C., Viennot, N., Nieh, J., 2014. Cider:
native execution of iOS apps on android. In: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS ’14, New York, NY, USA, pp. 367–382.

Apple Inc., 2024a. Capture setup. https://developer.apple.com/documentation/
avfoundation/capture_setup. (Accessed 11 February 2024).

Apple Inc., 2024b. PHPhotoLibrary. https://developer.apple.com/documentation/
photokit/phphotolibrary?language=objc. (Accessed 18 February 2024).

Apple Inc., 2024c. Selecting photos and videos in iOS. https://developer.apple.
com/documentation/photokit/selecting_photos_and_videos_in_ios?language=objc.
(Accessed 18 February 2024).

Apple Inc., 2024d. UIImagePickerController. https://developer.apple.com/
documentation/uikit/uiimagepickercontroller?language=objc. (Accessed 18
February 2024).

Associated Press, 2024. AP fact check. https://apnews.com/ap-fact-check. (Accessed 09
February 2024).

Avast Software, 2024. What is the MD5 hashing algorithm and how does it work? https:
//www.avast.com/c-md5-hashing-algorithm. (Accessed 09 February 2024).

Babulak, E., 2023. AI Tools for Protecting and Preventing Sophisticated Cyber Attacks.
IGI Global.

Barnaciak, C., Ross, D.A., 2022. How Easy Is It to Make and Detect a Deepfake?.
https://insights.sei.cmu.edu/blog/how-easy-is-it-to-make-and-detect-a-deepfake/.

Bartz, D., 2023. Microsoft chief says deep fakes are biggest AI concern. https://www.
thomsonreuters.com/en-us/posts/technology/practice-innovations-deepfakes/.

Baser, O., Kale, K., Chinchali, S.P., 2024. SecureSpectra: Safeguarding digital identity
from deep fake threats via intelligent signatures. In: Proceedings of Interspeech
2024. Interspeech ’24, pp. 1115–1119.

Belle Wong, J.D., 2023. Top social media statistics and trends Of 2024. https://www.
forbes.com/advisor/business/social-media-statistics/.

Boris Asadanin, 2018. Internet Video Streaming - ABR part 2. https:
//eyevinntechnology.medium.com/internet-video-streaming-abr-part-2-
dbce136b0d7c.

Britt, K., 2023. How are deepfakes dangerous?. https://www.unr.edu/nevada-today/
news/2023/atp-deepfakes.

Broadcom Inc., 2024. OpenPGP. https://www.openpgp.org/. (Accessed 09 February
2024).

http://refhub.elsevier.com/S0167-4048(25)00254-8/sb1
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb1
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb1
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb1
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb1
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb1
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb1
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb2
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb2
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb2
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb2
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb2
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb2
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb2
https://developer.apple.com/documentation/avfoundation/capture_setup
https://developer.apple.com/documentation/avfoundation/capture_setup
https://developer.apple.com/documentation/avfoundation/capture_setup
https://developer.apple.com/documentation/photokit/phphotolibrary?language=objc
https://developer.apple.com/documentation/photokit/phphotolibrary?language=objc
https://developer.apple.com/documentation/photokit/phphotolibrary?language=objc
https://developer.apple.com/documentation/photokit/selecting_photos_and_videos_in_ios?language=objc
https://developer.apple.com/documentation/photokit/selecting_photos_and_videos_in_ios?language=objc
https://developer.apple.com/documentation/photokit/selecting_photos_and_videos_in_ios?language=objc
https://developer.apple.com/documentation/uikit/uiimagepickercontroller?language=objc
https://developer.apple.com/documentation/uikit/uiimagepickercontroller?language=objc
https://developer.apple.com/documentation/uikit/uiimagepickercontroller?language=objc
https://apnews.com/ap-fact-check
https://www.avast.com/c-md5-hashing-algorithm
https://www.avast.com/c-md5-hashing-algorithm
https://www.avast.com/c-md5-hashing-algorithm
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb9
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb9
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb9
https://insights.sei.cmu.edu/blog/how-easy-is-it-to-make-and-detect-a-deepfake/
https://www.thomsonreuters.com/en-us/posts/technology/practice-innovations-deepfakes/
https://www.thomsonreuters.com/en-us/posts/technology/practice-innovations-deepfakes/
https://www.thomsonreuters.com/en-us/posts/technology/practice-innovations-deepfakes/
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb12
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb12
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb12
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb12
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb12
https://www.forbes.com/advisor/business/social-media-statistics/
https://www.forbes.com/advisor/business/social-media-statistics/
https://www.forbes.com/advisor/business/social-media-statistics/
https://eyevinntechnology.medium.com/internet-video-streaming-abr-part-2-dbce136b0d7c
https://eyevinntechnology.medium.com/internet-video-streaming-abr-part-2-dbce136b0d7c
https://eyevinntechnology.medium.com/internet-video-streaming-abr-part-2-dbce136b0d7c
https://eyevinntechnology.medium.com/internet-video-streaming-abr-part-2-dbce136b0d7c
https://eyevinntechnology.medium.com/internet-video-streaming-abr-part-2-dbce136b0d7c
https://www.unr.edu/nevada-today/news/2023/atp-deepfakes
https://www.unr.edu/nevada-today/news/2023/atp-deepfakes
https://www.unr.edu/nevada-today/news/2023/atp-deepfakes
https://www.openpgp.org/

N. AlDuaij Computers & Security 157 (2025) 104565
California Legislative Information, 2024. AB-730 Elections: deceptive audio or
visual media. https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=
201920200AB730. (Accessed 07 February 2024).

Canonical Limited, 2024. Ubuntu releases. https://releases.ubuntu.com/. (Accessed 09
February 2024).

Chen, H., Darvish, B., Koushanfar, F., 2020. SpecMark: A spectral watermarking
framework for IP protection of speech recognition systems. In: Proceedings of
Interspeech 2020. Interspeech ’20, pp. 2312–2316.

Chen, H., Magramo, K., 2024. Finance worker pays out $25 million after video call
with deepfake ’chief financial officer’. https://edition.cnn.com/2024/02/04/asia/
deepfake-cfo-scam-hong-kong-intl-hnk/index.html.

CNN, 2024. Facts first. https://edition.cnn.com/politics/fact-check. (Accessed 09
February 2024).

Coalition for Content Provenance and Authenticity, 2024. Overview - C2PA. https:
//c2pa.org/. (Accessed 09 February 2024).

Costales, J.A., Shiromani, S., Devaraj, M., 2023. The impact of blockchain technology
to protect image and video integrity from identity theft using deepfake analyzer.
In: 2023 International Conference on Innovative Data Communication Technologies
and Application. ICIDCA, pp. 730–733.

danielquinn, 2024. aletheia. https://danielquinn.github.io/aletheia/. (Accessed 21
February 2024).

Department of Homeland Security, 2024. Increasing threat of deepfake identities.
https://www.dhs.gov/sites/default/files/publications/increasing_threats_of_
deepfake_identities_0.pdf. (Accessed 07 February 2024).

England, P., Malvar, H.S., Horvitz, E., Stokes, J.W., Fournet, C., Burke-Aguero, R.,
Chamayou, A., Clebsch, S., Costa, M., Deutscher, J., Erfani, S., Gaylor, M., Jenks, A.,
Kane, K., Redmiles, E.M., Shamis, A., Sharma, I., Simmons, J.C., Wenker, S.,
Zaman, A., 2021. AMP: authentication of media via provenance. In: Proceedings of
the 12th ACM Multimedia Systems Conference. MMSys ’21, New York, NY, USA,
pp. 108–121.

eSafetyCommissioner - Australian Government, 2024. Deepfake trends and chal-
lenges. https://www.esafety.gov.au/sites/default/files/2022-01/Deepfake-position-
statement%20_v2.pdf. (Accessed 07 February 2024).

ETtech, 2023. Deepfake menace: Govt issues advisory to social media platforms to
comply with IT rules. https://economictimes.indiatimes.com/tech/technology/
deepfake-menace-govt-issues-advisory-to-intermediaries-to-comply-with-existing-it-
rules/articleshow/106297813.cms.

Gipp, B., Kosti, J., Breitinger, C., 2016. Securing video integrity using decentralized
trusted timestamping on the bitcoin blockchain. In: 10th Mediterranean Conference
on Information Systems. MCIS.

Google LLC, 2024a. Android Open Source Project. https://source.android.com/.
(Accessed 19 February 2024).

Google LLC, 2024b. BitmapFactory. https://developer.android.com/reference/android/
graphics/BitmapFactory. (Accessed 19 February 2024).

Google LLC, 2024c. Choose a camera library. https://developer.android.com/media/
camera/choose-camera-library. (Accessed 11 February 2024).

Google LLC, 2024d. Content provider basics. https://developer.android.com/guide/
topics/providers/content-provider-basics. (Accessed 18 February 2024).

Google LLC, 2024e. ContentResolver. https://developer.android.com/reference/
android/content/ContentResolver. (Accessed 18 February 2024).

Google LLC, 2024f. Data and file storage overview. https://developer.android.com/
training/data-storage. (Accessed 18 February 2024).

Google LLC, 2024g. Generate text, images, code, and more with google cloud AI.
https://cloud.google.com/use-cases/generative-ai. (Accessed 07 February 2024).

Google LLC, 2024h. MediaExtractor. https://developer.android.com/reference/android/
media/MediaExtractor. (Accessed 19 February 2024).

Google LLC, 2024i. MediaPlayer. https://developer.android.com/reference/android/
media/MediaPlayer. (Accessed 18 February 2024).

Google LLC, 2024j. MediaProvider. https://source.android.com/docs/core/ota/modular-
system/mediaprovider. (Accessed 18 February 2024).

Google LLC, 2024k. MediaStore. https://developer.android.com/reference/android/
provider/MediaStore. (Accessed 18 February 2024).

Google LLC, 2024l. Sign your app. https://developer.android.com/studio/publish/app-
signing. (Accessed 09 February 2024).

Groh, M., Epstein, Z., Firestone, C., Picard, R., 2022. Deepfake detection by human
crowds, machines, and machine-informed crowds. Proc. Natl. Acad. Sci. 119.

Guarnera, L., Giudice, O., Battiato, S., 2020. DeepFake detection by analyzing convo-
lutional traces. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops. CVPRW, pp. 2841–2850.

GZERO Staff, 2023. How AI and deepfakes are being used for malicious reasons.
https://www.gzeromedia.com/global-stage/digital-governance/how-ai-and-
deepfakes-are-being-used-for-malicious-reasons.

Hao, K., 2018. Deepfake-busting apps can spot even a single pixel out of
place. https://www.technologyreview.com/2018/11/01/139227/deepfake-busting-
apps-can-spot-even-a-single-pixel-out-of-place/.

Hasan, H.R., Salah, K., 2019. Combating deepfake videos using blockchain and smart
contracts. IEEE Access 7, 41596–41606.

Hsu, T., 2023. As deepfakes flourish, countries struggle with response. https://www.
nytimes.com/2023/01/22/business/media/deepfake-regulation-difficulty.html.
12
Jackson, A., 2023. The rising tide of deepfakes as AI growth cause con-
cern. https://cybermagazine.com/technology-and-ai/the-rising-tide-of-deepfakes-as-
ai-growth-cause-concern.

Juefei-Xu, F., Wang, R., Huang, Y., Guo, Q., Ma, L., Liu, Y., 2022. Countering
malicious DeepFakes: Survey, battleground, and horizon. Int. J. Compter Vis. 130,
1678–1734.

Kaggle, 2024. Deepfake detection challenge. https://www.kaggle.com/c/deepfake-
detection-challenge. (Accessed 07 February 2024).

Kan, M., 2023. FBI: Scammers Using Public Photos, Videos for Deepfake Extortion
Schemes. https://www.pcmag.com/news/fbi-scammers-using-public-photos-videos-
for-deepfake-extortion-scheme.

Kepios Pte. Ltd., 2024. Digital around the world. https://datareportal.com/global-
digital-overview. (Accessed 20 February 2024).

Knight, W., 2018. The US military is funding an effort to catch deepfakes and other AI
trickery. https://www.technologyreview.com/2018/05/23/142770/the-us-military-
is-funding-an-effort-to-catch-deepfakes-and-other-ai-trickery/.

Koh, J.S., Bellovin, S.M., Nieh, J., 2019. Why joanie can encrypt: Easy email encryption
with easy key management. In: Proceedings of the Fourteenth EuroSys Conference
2019. In: EuroSys 2019, Association for Computing Machinery, New York, NY,
USA.

KPMG, 2024. Deepfakes: Real threat. https://kpmg.com/kpmg-us/content/dam/kpmg/
pdf/2023/deepfakes-real-threat.pdf. (Accessed 07 February 2024).

Linux Kernel Organization, Inc., 2024. 1.11. Camera control reference. https:
//www.kernel.org/doc/html/next/userspace-api/media/v4l/ext-ctrls-camera.html.
(Accessed 11 February 2024).

Liu, Y.M., Nakatsuka, Y., Sani, A.A., Agarwal, S., Tsudik, G., 2022. Vronicle: verifiable
provenance for videos from mobile devices. In: Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services. MobiSys
’22, New York, NY, USA, pp. 196–208.

Liu, Y.M., Yao, Z., Chen, M., Amiri Sani, A., Agarwal, S., Tsudik, G., 2024. ProvCam:
A camera module with self-contained TCB for producing verifiable videos. In:
Proceedings of the 30th Annual International Conference on Mobile Computing
and Networking. MobiCom ’24, New York, NY, USA, pp. 588–602.

Matt Novak, 2023. Viral video of Kamala Harris speaking Gibberish is actually
A deepfake. https://www.forbes.com/sites/mattnovak/2023/05/08/viral-video-of-
kamala-harris-speaking-gibberish-is-deepfake.

Merriam-Webster, 2024. Deepfake definition & meaning - merriam-webster. https:
//www.merriam-webster.com/dictionary/deepfake. (Accessed 07 February 2024).

Meta, 2024a. About fact-checking on Facebook and Instagram. https://www.facebook.
com/business/help/2593586717571940. (Accessed 07 February 2024).

Meta, 2024b. Deepfake detection challenge results: An open initiative to ad-
vance AI. https://ai.meta.com/blog/deepfake-detection-challenge-results-an-open-
initiative-to-advance-ai/. (Accessed 07 February 2024).

Michael Labos, 2024. What is a Certificate Authority (CA)?. https://www.ssl.com/
article/what-is-a-certificate-authority-ca/.

Microsoft Corporation, 2024a. CameraCaptureUI class. https://learn.microsoft.com/
en-us/uwp/api/windows.media.capture.cameracaptureui. (Accessed 11 February
2024).

Microsoft Corporation, 2024b. Driver Signing. https://learn.microsoft.com/en-us/
windows-hardware/drivers/install/driver-signing. (Accessed 09 February 2024).

MIT Media Lab, 2024. Detect DeepFakes: How to counteract misinformation created
by AI. https://www.media.mit.edu/projects/detect-fakes/overview/. (Accessed 07
February 2024).

Mohanraj, R., Babulak, E., 2019. A secure energy efficient IoT based fractional
correlated Bayesian data transmission in WSNs. J. Commun. Inf. Networks 4 (1),
54–66.

OriginalMy, 2024. OriginalMy. https://originalmy.com/. (Accessed 09 February 2024).
O’Sullivan, D., 2019. When seeing is no longer believing - Inside the Pentagon’s race

against deepfake videos. https://edition.cnn.com/interactive/2019/01/business/
pentagons-race-against-deepfakes/.

Pandey, M., 2023. Senior citizen falls prey to deepfake extortion plot. https://
analyticsindiamag.com/senior-citizen-falls-victim-to-deep-fake-extortion-plot/.

PassMark Software, 2024. PassMark PerformanceTest. https://play.google.com/store/
apps/details?id=com.passmark.pt_mobile. (Accessed 21 February 2024).

PassMark Software, 2025. Android Devices - PassMark Rating. https://www.
androidbenchmark.net/passmark_chart.html. (Accessed 07 May 2025).

Paul, K., 2020. Twitter to label deepfakes and other deceptive media. https://www.
reuters.com/article/us-twitter-security-idUSKBN1ZY2OV/.

Peras, D., Mekovec, R., 2022. A conceptualization of the privacy concerns of cloud
users. Inf. Comput. Secur. 30, 653–671.

Philmlee, D., 2023. Practice Innovations: Seeing is no longer believing - the rise
of deepfakes. https://www.thomsonreuters.com/en-us/posts/technology/practice-
innovations-deepfakes/.

Protocol Labs, 2024. IPFS is an open system to manage data without a central server.
https://ipfs.tech/. (Accessed 09 February 2024).

Prover, 2024. Authenticity verification of user generated video files. https://prover.io/.
(Accessed 09 February 2024).

Ray, T., 2023. Generative AI can easily be made malicious despite guardrails,
say scholars. https://www.zdnet.com/article/generative-ai-can-easily-be-made-
malicious-despite-guardrails-say-scholars/.

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB730
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB730
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB730
https://releases.ubuntu.com/
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb19
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb19
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb19
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb19
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb19
https://edition.cnn.com/2024/02/04/asia/deepfake-cfo-scam-hong-kong-intl-hnk/index.html
https://edition.cnn.com/2024/02/04/asia/deepfake-cfo-scam-hong-kong-intl-hnk/index.html
https://edition.cnn.com/2024/02/04/asia/deepfake-cfo-scam-hong-kong-intl-hnk/index.html
https://edition.cnn.com/politics/fact-check
https://c2pa.org/
https://c2pa.org/
https://c2pa.org/
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb23
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb23
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb23
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb23
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb23
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb23
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb23
https://danielquinn.github.io/aletheia/
https://www.dhs.gov/sites/default/files/publications/increasing_threats_of_deepfake_identities_0.pdf
https://www.dhs.gov/sites/default/files/publications/increasing_threats_of_deepfake_identities_0.pdf
https://www.dhs.gov/sites/default/files/publications/increasing_threats_of_deepfake_identities_0.pdf
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb26
https://www.esafety.gov.au/sites/default/files/2022-01/Deepfake-position-statement%2520_v2.pdf
https://www.esafety.gov.au/sites/default/files/2022-01/Deepfake-position-statement%2520_v2.pdf
https://www.esafety.gov.au/sites/default/files/2022-01/Deepfake-position-statement%2520_v2.pdf
https://economictimes.indiatimes.com/tech/technology/deepfake-menace-govt-issues-advisory-to-intermediaries-to-comply-with-existing-it-rules/articleshow/106297813.cms
https://economictimes.indiatimes.com/tech/technology/deepfake-menace-govt-issues-advisory-to-intermediaries-to-comply-with-existing-it-rules/articleshow/106297813.cms
https://economictimes.indiatimes.com/tech/technology/deepfake-menace-govt-issues-advisory-to-intermediaries-to-comply-with-existing-it-rules/articleshow/106297813.cms
https://economictimes.indiatimes.com/tech/technology/deepfake-menace-govt-issues-advisory-to-intermediaries-to-comply-with-existing-it-rules/articleshow/106297813.cms
https://economictimes.indiatimes.com/tech/technology/deepfake-menace-govt-issues-advisory-to-intermediaries-to-comply-with-existing-it-rules/articleshow/106297813.cms
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb29
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb29
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb29
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb29
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb29
https://source.android.com/
https://developer.android.com/reference/android/graphics/BitmapFactory
https://developer.android.com/reference/android/graphics/BitmapFactory
https://developer.android.com/reference/android/graphics/BitmapFactory
https://developer.android.com/media/camera/choose-camera-library
https://developer.android.com/media/camera/choose-camera-library
https://developer.android.com/media/camera/choose-camera-library
https://developer.android.com/guide/topics/providers/content-provider-basics
https://developer.android.com/guide/topics/providers/content-provider-basics
https://developer.android.com/guide/topics/providers/content-provider-basics
https://developer.android.com/reference/android/content/ContentResolver
https://developer.android.com/reference/android/content/ContentResolver
https://developer.android.com/reference/android/content/ContentResolver
https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage
https://cloud.google.com/use-cases/generative-ai
https://developer.android.com/reference/android/media/MediaExtractor
https://developer.android.com/reference/android/media/MediaExtractor
https://developer.android.com/reference/android/media/MediaExtractor
https://developer.android.com/reference/android/media/MediaPlayer
https://developer.android.com/reference/android/media/MediaPlayer
https://developer.android.com/reference/android/media/MediaPlayer
https://source.android.com/docs/core/ota/modular-system/mediaprovider
https://source.android.com/docs/core/ota/modular-system/mediaprovider
https://source.android.com/docs/core/ota/modular-system/mediaprovider
https://developer.android.com/reference/android/provider/MediaStore
https://developer.android.com/reference/android/provider/MediaStore
https://developer.android.com/reference/android/provider/MediaStore
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb42
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb42
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb42
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb43
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb43
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb43
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb43
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb43
https://www.gzeromedia.com/global-stage/digital-governance/how-ai-and-deepfakes-are-being-used-for-malicious-reasons
https://www.gzeromedia.com/global-stage/digital-governance/how-ai-and-deepfakes-are-being-used-for-malicious-reasons
https://www.gzeromedia.com/global-stage/digital-governance/how-ai-and-deepfakes-are-being-used-for-malicious-reasons
https://www.technologyreview.com/2018/11/01/139227/deepfake-busting-apps-can-spot-even-a-single-pixel-out-of-place/
https://www.technologyreview.com/2018/11/01/139227/deepfake-busting-apps-can-spot-even-a-single-pixel-out-of-place/
https://www.technologyreview.com/2018/11/01/139227/deepfake-busting-apps-can-spot-even-a-single-pixel-out-of-place/
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb46
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb46
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb46
https://www.nytimes.com/2023/01/22/business/media/deepfake-regulation-difficulty.html
https://www.nytimes.com/2023/01/22/business/media/deepfake-regulation-difficulty.html
https://www.nytimes.com/2023/01/22/business/media/deepfake-regulation-difficulty.html
https://cybermagazine.com/technology-and-ai/the-rising-tide-of-deepfakes-as-ai-growth-cause-concern
https://cybermagazine.com/technology-and-ai/the-rising-tide-of-deepfakes-as-ai-growth-cause-concern
https://cybermagazine.com/technology-and-ai/the-rising-tide-of-deepfakes-as-ai-growth-cause-concern
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb49
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb49
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb49
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb49
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb49
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.pcmag.com/news/fbi-scammers-using-public-photos-videos-for-deepfake-extortion-scheme
https://www.pcmag.com/news/fbi-scammers-using-public-photos-videos-for-deepfake-extortion-scheme
https://www.pcmag.com/news/fbi-scammers-using-public-photos-videos-for-deepfake-extortion-scheme
https://datareportal.com/global-digital-overview
https://datareportal.com/global-digital-overview
https://datareportal.com/global-digital-overview
https://www.technologyreview.com/2018/05/23/142770/the-us-military-is-funding-an-effort-to-catch-deepfakes-and-other-ai-trickery/
https://www.technologyreview.com/2018/05/23/142770/the-us-military-is-funding-an-effort-to-catch-deepfakes-and-other-ai-trickery/
https://www.technologyreview.com/2018/05/23/142770/the-us-military-is-funding-an-effort-to-catch-deepfakes-and-other-ai-trickery/
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb54
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb54
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb54
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb54
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb54
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb54
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb54
https://kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/deepfakes-real-threat.pdf
https://kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/deepfakes-real-threat.pdf
https://kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/deepfakes-real-threat.pdf
https://www.kernel.org/doc/html/next/userspace-api/media/v4l/ext-ctrls-camera.html
https://www.kernel.org/doc/html/next/userspace-api/media/v4l/ext-ctrls-camera.html
https://www.kernel.org/doc/html/next/userspace-api/media/v4l/ext-ctrls-camera.html
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb57
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb57
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb57
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb57
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb57
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb57
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb57
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb58
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb58
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb58
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb58
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb58
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb58
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb58
https://www.forbes.com/sites/mattnovak/2023/05/08/viral-video-of-kamala-harris-speaking-gibberish-is-deepfake
https://www.forbes.com/sites/mattnovak/2023/05/08/viral-video-of-kamala-harris-speaking-gibberish-is-deepfake
https://www.forbes.com/sites/mattnovak/2023/05/08/viral-video-of-kamala-harris-speaking-gibberish-is-deepfake
https://www.merriam-webster.com/dictionary/deepfake
https://www.merriam-webster.com/dictionary/deepfake
https://www.merriam-webster.com/dictionary/deepfake
https://www.facebook.com/business/help/2593586717571940
https://www.facebook.com/business/help/2593586717571940
https://www.facebook.com/business/help/2593586717571940
https://ai.meta.com/blog/deepfake-detection-challenge-results-an-open-initiative-to-advance-ai/
https://ai.meta.com/blog/deepfake-detection-challenge-results-an-open-initiative-to-advance-ai/
https://ai.meta.com/blog/deepfake-detection-challenge-results-an-open-initiative-to-advance-ai/
https://www.ssl.com/article/what-is-a-certificate-authority-ca/
https://www.ssl.com/article/what-is-a-certificate-authority-ca/
https://www.ssl.com/article/what-is-a-certificate-authority-ca/
https://learn.microsoft.com/en-us/uwp/api/windows.media.capture.cameracaptureui
https://learn.microsoft.com/en-us/uwp/api/windows.media.capture.cameracaptureui
https://learn.microsoft.com/en-us/uwp/api/windows.media.capture.cameracaptureui
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://www.media.mit.edu/projects/detect-fakes/overview/
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb67
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb67
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb67
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb67
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb67
https://originalmy.com/
https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/
https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/
https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/
https://analyticsindiamag.com/senior-citizen-falls-victim-to-deep-fake-extortion-plot/
https://analyticsindiamag.com/senior-citizen-falls-victim-to-deep-fake-extortion-plot/
https://analyticsindiamag.com/senior-citizen-falls-victim-to-deep-fake-extortion-plot/
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile
https://www.androidbenchmark.net/passmark_chart.html
https://www.androidbenchmark.net/passmark_chart.html
https://www.androidbenchmark.net/passmark_chart.html
https://www.reuters.com/article/us-twitter-security-idUSKBN1ZY2OV/
https://www.reuters.com/article/us-twitter-security-idUSKBN1ZY2OV/
https://www.reuters.com/article/us-twitter-security-idUSKBN1ZY2OV/
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb74
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb74
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb74
https://www.thomsonreuters.com/en-us/posts/technology/practice-innovations-deepfakes/
https://www.thomsonreuters.com/en-us/posts/technology/practice-innovations-deepfakes/
https://www.thomsonreuters.com/en-us/posts/technology/practice-innovations-deepfakes/
https://ipfs.tech/
https://prover.io/
https://www.zdnet.com/article/generative-ai-can-easily-be-made-malicious-despite-guardrails-say-scholars/
https://www.zdnet.com/article/generative-ai-can-easily-be-made-malicious-despite-guardrails-say-scholars/
https://www.zdnet.com/article/generative-ai-can-easily-be-made-malicious-despite-guardrails-say-scholars/

N. AlDuaij Computers & Security 157 (2025) 104565
Reuters, 2024. China seeks to root out fake news and deepfakes with new online
content rules. https://www.reuters.com/article/us-china-technology/china-seeks-to-
root-out-fake-news-and-deepfakes-with-new-online-content-rules-idUSKBN1Y30VU/.
(Accessed 07 February 2024).

Saroiu, S., Wolman, A., 2010. I am a sensor, and I approve this message. In: Proceedings
of the Eleventh Workshop on Mobile Computing Systems & Applications. HotMobile
’10, New York, NY, USA, pp. 37–42.

Schoning, J., Gert, A., Acik, A., Kietzmann, T., Heidemann, G., Konig, P., 2017.
Exploratory multimodal data analysis with standard multimedia player. In: 12th In-
ternational Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications. VISIGRAPP 2017, pp. 272–279.

Serelay Limited, 2024. Serelay trusted media capture. https://www.serelay.com/.
(Accessed 09 February 2024).

Shahid, I., Roy, N., 2023. ‘‘Is this my president speaking?’’ tamper-proofing speech in
live recordings. In: Proceedings of the 21st Annual International Conference on
Mobile Systems, Applications and Services. MobiSys ’23, New York, NY, USA, pp.
219–232.

Singh, P., 2021. Robust homomorphic video hashing. In: 2021 IEEE 4th International
Conference on Multimedia Information Processing and Retrieval. MIPR, pp. 91–96.

Soveizi, N., Turkmen, F., Karastoyanova, D., 2023. Security and privacy concerns in
cloud-based scientific and business workflows: A systematic review. Future Gener.
Comput. Syst. 148, 184–200.

Toews, R., 2020. Deepfakes Are Going To Wreak Havoc On Society. We Are
Not Prepared. https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-are-
going-to-wreak-havoc-on-society-we-are-not-prepared.

Truepic, 2024. Authenticity infrastructure for the internet. https://truepic.com/.
(Accessed 09 February 2024).

US Congress, 2024a. S.3805 - Malicious deep fake prohibition act of 2018. https:
//www.congress.gov/bill/115th-congress/senate-bill/3805. (Accessed 07 February
2024).
13
US Congress, 2024b. H.R.3230 - DEEP FAKES accountability act. https://www.congress.
gov/bill/116th-congress/house-bill/3230. (Accessed 07 February 2024).

Videolabs, 2024. VLC for Android. https://play.google.com/store/apps/details?id=org.
videolan.vlc. (Accessed 21 February 2024).

Wong, J., 2024. Amid rise in AI deepfakes, experts urge school curriculum updates for
online behaviour. https://www.cbc.ca/news/canada/education-curriculum-sexual-
violence-deepfake-1.7073380.

X. Corp., 2024. Help us shape our approach to synthetic and manipulated media.
https://blog.twitter.com/en_us/topics/company/2019/synthetic_manipulated_
media_policy_feedback. (Accessed 07 February 2024).

Zewe, A., 2023. Explained: Generative AI. https://news.mit.edu/2023/explained-
generative-ai-1109.

Zhang, X., Xu, Y., Li, R., Yu, J., Li, W., Xu, Z., Zhang, J., 2024. V2A-mark: Versatile deep
visual-audio watermarking for manipulation localization and copyright protection.
In: Proceedings of the 32nd ACM International Conference on Multimedia. MM ’24,
New York, NY, USA, pp. 9818–9827.

Zhao, Y., Liu, B., Ding, M., Liu, B., Zhu, T., Yu, X., 2023. Proactive deepfake defence
via identity watermarking. In: 2023 IEEE/CVF Winter Conference on Applications
of Computer Vision. WACV, pp. 4591–4600.

Zheng, Y., Cao, Y., Chang, C.-H., 2020. A PUF-based data-device hash for tampered
image detection and source camera identification. IEEE Trans. Inf. Forensics Secur.
(ISSN: 1556-6013) 15, 620–634.

Naser AlDuaij is an Assistant Professor in Computer Science at Kuwait University
and a consultant. He received two B.S.E. degrees in Computer Science and Computer
Engineering with Mathematics and Physics minors from the University of Michigan
at Ann Arbor, an M.S. degree from Yale University, and an M.S., M.Phil., and Ph.D.
degrees from Columbia University in Computer Science. Prior to his graduate studies,
he worked as a software engineer for VMware Inc. His research interests include
the Internet of Things, operating systems, security, mobile and ubiquitous computing,
virtualization, and embedded systems.

https://www.reuters.com/article/us-china-technology/china-seeks-to-root-out-fake-news-and-deepfakes-with-new-online-content-rules-idUSKBN1Y30VU/
https://www.reuters.com/article/us-china-technology/china-seeks-to-root-out-fake-news-and-deepfakes-with-new-online-content-rules-idUSKBN1Y30VU/
https://www.reuters.com/article/us-china-technology/china-seeks-to-root-out-fake-news-and-deepfakes-with-new-online-content-rules-idUSKBN1Y30VU/
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb80
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb80
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb80
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb80
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb80
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb81
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb81
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb81
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb81
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb81
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb81
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb81
https://www.serelay.com/
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb83
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb83
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb83
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb83
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb83
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb83
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb83
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb84
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb84
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb84
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb85
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb85
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb85
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb85
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb85
https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-are-going-to-wreak-havoc-on-society-we-are-not-prepared
https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-are-going-to-wreak-havoc-on-society-we-are-not-prepared
https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-are-going-to-wreak-havoc-on-society-we-are-not-prepared
https://truepic.com/
https://www.congress.gov/bill/115th-congress/senate-bill/3805
https://www.congress.gov/bill/115th-congress/senate-bill/3805
https://www.congress.gov/bill/115th-congress/senate-bill/3805
https://www.congress.gov/bill/116th-congress/house-bill/3230
https://www.congress.gov/bill/116th-congress/house-bill/3230
https://www.congress.gov/bill/116th-congress/house-bill/3230
https://play.google.com/store/apps/details?id=org.videolan.vlc
https://play.google.com/store/apps/details?id=org.videolan.vlc
https://play.google.com/store/apps/details?id=org.videolan.vlc
https://www.cbc.ca/news/canada/education-curriculum-sexual-violence-deepfake-1.7073380
https://www.cbc.ca/news/canada/education-curriculum-sexual-violence-deepfake-1.7073380
https://www.cbc.ca/news/canada/education-curriculum-sexual-violence-deepfake-1.7073380
https://blog.twitter.com/en_us/topics/company/2019/synthetic_manipulated_media_policy_feedback
https://blog.twitter.com/en_us/topics/company/2019/synthetic_manipulated_media_policy_feedback
https://blog.twitter.com/en_us/topics/company/2019/synthetic_manipulated_media_policy_feedback
https://news.mit.edu/2023/explained-generative-ai-1109
https://news.mit.edu/2023/explained-generative-ai-1109
https://news.mit.edu/2023/explained-generative-ai-1109
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb94
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb94
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb94
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb94
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb94
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb94
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb94
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb95
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb95
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb95
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb95
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb95
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb96
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb96
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb96
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb96
http://refhub.elsevier.com/S0167-4048(25)00254-8/sb96

	VeracOS: An operating system extension for the veracity of files
	Introduction
	Usage Model
	Threat Model
	Related Work
	Background
	Media Files
	Android

	Architecture
	Media Producers
	Media Consumers
	VeracOS Algorithm
	VeracOS Mathematical Description
	Notation
	Certification (Producer Side)
	Verification (Consumer Side)
	Security Guarantees

	Cross-Operating System Feasibility
	VeracOS Limitations

	Implementation
	Evaluation
	VeracOS Producer and Consumer Examples
	Timing Analysis
	Performance Measurements
	VeracOS Versus Other Solutions

	Conclusion and Future Work
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

